Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Data on influence of atmospheric rivers on vegetation productivity and fire patterns in the southwestern US

Metadata Updated: June 15, 2024

In the southwestern US, the meteorological phenomenon known as atmospheric rivers (ARs) has gained increasing attention due to its strong connections to floods, snowpacks and water supplies in the West Coast states. Relatively less is known about the ecological implications of ARs, particularly in the interior Southwest, where AR storms are less common. To address this gap, we compared a chronology of AR landfalls on the west coast between 1989-2011 and between 25-42.5ºN, to annual metrics of the Normalized Difference Vegetation Index (NDVI; an indicator of vegetation productivity) and daily-resolution precipitation data to assess influences of AR-fed winter precipitation on vegetation productivity across the southwestern US. We mapped correlations between winter AR precipitation during landfalling ARs and 1) annual maximum NDVI and 2) area burned by large wildfires summarized by ecoregion during the same year as the landfalls and during the following year. The data produced by this study include four sets of eight raster grids (total = 32 grids) representing Spearman Rank correlation coefficients for four types of comparisons across eight different latitudinal bands. Each dataset is named according to the comparison type and latitude of AR landfall. The four types of comparisons (with corresponding filenames indicated in parentheses) include: 1) annual winter atmospheric river precipitation vs. total annual winter precipitation (AR_WinterPrecip), 2) annual winter atmospheric river precipitation vs. annual maximum NDVI (AR_NDVI), 3) spatially-averaged annual winter atmospheric river precipitation vs. area burned by wildfire during the same year by Level IV ecoregion (AR_Fire_SameYear), and 4) spatially-averaged annual winter atmospheric river precipitation vs. area burned by wildfire with a 1-year lag by Level IV ecoregion (AR_Fire_OneYearLag). The eight landfall latitudes are indicated in filenames as follows: 25N, 27_5N, 30N, 32_5N, 35N, 37_5_N, 40N, 42_5N.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date May 31, 2023
Metadata Updated Date June 15, 2024

Metadata Source

Harvested from DOI EDI

Additional Metadata

Resource Type Dataset
Metadata Created Date May 31, 2023
Metadata Updated Date June 15, 2024
Publisher Climate Adaptation Science Centers
Maintainer
@Id http://datainventory.doi.gov/id/dataset/71068e14f2a2c3989ef865be6e54d79b
Identifier 727ee15b-e88e-4a8d-9fa9-952f6f2cf1df
Data Last Modified 2020-08-14
Category geospatial
Public Access Level public
Bureau Code 010:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://datainventory.doi.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 01ed11f1-89a5-4e28-8bf9-f8d675361d3e
Harvest Source Id 52bfcc16-6e15-478f-809a-b1bc76f1aeda
Harvest Source Title DOI EDI
Metadata Type geospatial
Old Spatial -126.785592817,28.403475491,-106.267663646,45.753260345
Source Datajson Identifier True
Source Hash 6f5609ca521fceb4e2fe460a213f90130105792be3d38a7e22a1925fe3909c8e
Source Schema Version 1.1
Spatial {"type": "Polygon", "coordinates": -126.785592817, 28.403475491, -126.785592817, 45.753260345, -106.267663646, 45.753260345, -106.267663646, 28.403475491, -126.785592817, 28.403475491}

Didn't find what you're looking for? Suggest a dataset here.