Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Anomaly Detection and Diagnosis Algorithms for Discrete Symbols

Metadata Updated: April 10, 2025

We present a set of novel algorithms which we call sequenceMiner that detect and characterize anomalies in large sets of high-dimensional symbol sequences that arise from recordings of switch sensors in the cockpits of commercial airliners. While the algorithms we present are general and ___domain-independent, we focus on a specific problem that is critical to determining the system-wide health of a fleet of aircraft. The approach taken uses unsupervised clustering of sequences using the normalized length of the longest common subsequence (nLCS) as a similarity measure, followed by detailed outlier analysis to detect anomalies. In this method, an outlier sequence is defined as a sequence that is far away from the cluster centre. We present new algorithms for outlier analysis that provide comprehensible indicators as to why a particular sequence is deemed to be an outlier. The algorithms provide a coherent description to an analyst of the anomalies in the sequence when compared to more normal sequences. In the final section of the paper we demonstrate the effectiveness of sequenceMiner for anomaly detection on a real set of discrete sequence data from a fleet of commercial airliners. We show that sequenceMiner discovers actionable and operationally significant safety events. We also compare our innovations with standard HiddenMarkov Models, and show that our methods are superior.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date November 12, 2020
Metadata Updated Date April 10, 2025
Data Update Frequency irregular

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date April 10, 2025
Publisher Dashlink
Maintainer
Identifier DASHLINK_147
Data First Published 2010-09-22
Data Last Modified 2025-03-31
Public Access Level public
Data Update Frequency irregular
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id f5d7ea0d-3066-498b-afc5-a4e9d81ae376
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL https://c3.nasa.gov/dashlink/resources/147/
Program Code 026:029
Source Datajson Identifier True
Source Hash bc012f8c7a8566a84cf7bcfee4ac2abf23cd9d7bfe72b858c7a9ebdffbb8b1aa
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.