Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Comparison of Prognostic Algorithms for Estimating Remaining Useful Life of Batteries

Metadata Updated: April 10, 2025

We were interested here in particular in conditions where un-modeled effects are present as manifested by the different degradation curve at 45°C. Although all algorithms were given the same amount of information to the degree practical, there were considerable differences in performance. Specifically, the combined Bayesian regression-estimation approach implemented as a RVM-PF framework has significant advantages over conventional methods of RUL estimation like ARIMA and EKF. ARIMA, being a purely data-driven method, does not incorporate any physics of the process into the computation, and hence ends up with wide uncertainty margins that make it unsuitable for long-term predictions. Additionally, it may not be possible to eliminate all non-stationarity from a dataset even after repeated differencing, thus adding to prediction inaccuracy. EKF, though robust against non-stationarity, suffers from the inability to accommodate un-modeled effects and can diverge quickly as shown. We did not explore other variations of the Kalman Filter that might provide better performance such as the unscented Kalman Filter. The Bayesian statistical approach, on the other hand, appears to be well suited to handle various sources of uncertainties since it defines probability distributions over both parameters and variables and integrates out the nuisance terms. Also, it does not simply provide a mean estimate of the time-to-failure; rather it generates a probability distribution over time that best encapsulates the uncertainties inherent in the system model and measurements and in the core concept of failure prediction.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date November 12, 2020
Metadata Updated Date April 10, 2025
Data Update Frequency irregular

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date April 10, 2025
Publisher Dashlink
Maintainer
Identifier DASHLINK_685
Data First Published 2013-04-10
Data Last Modified 2025-03-31
Public Access Level public
Data Update Frequency irregular
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id a88cf125-8c0a-468e-b865-13880f6968fb
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL https://c3.nasa.gov/dashlink/resources/685/
Program Code 026:029
Source Datajson Identifier True
Source Hash 74e4b412a9b7d491da91fd2f5c85667bc0f9b191d8b939abc47f6549223757ac
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.