Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Deep Mapping of Small Solar System Bodies with Galactic Cosmic Ray Secondary Particle Showers Project

Metadata Updated: April 10, 2025

<p>Our Phase I study demonstrated that&nbsp;muons, the long-range charged component of GCR showers, can penetrate SSBs on the order of a km in diameter or less, providing&nbsp;information on their interior structure. Muons produced in Earth&rsquo;s atmosphere have been applied to image the interior of large&nbsp;objects, such as the Great Pyramids and volcanos. In Phase I, we found that the production of muons in the solid surfaces of airless&nbsp;bodies is much smaller than in Earth&rsquo;s atmosphere. Nevertheless, the flux of transmitted muons is sufficient to detect inclusions within&nbsp;an asteroid or comet in a reasonable period of time, ranging from hours to weeks, depending on the size of the SSB and the density&nbsp;contrast, position and size of the inclusion. The intrinsic spatial resolution of muon radiography (&ldquo;muography&rdquo;) is on the scale of&nbsp;a few meters. The spatial resolution that can be achieved in practice depends on signal intensity and integration time, the angular&nbsp;resolution of the muon tracker (hodoscope) and details of data reduction and analysis methodology.</p><p>Our Phase II project will continue to assess remaining unknowns for the application of muography to determining the interior&nbsp;structure of SSBs, assess risks for implementation, and provide a roadmap for development of SSB muography beyond the NIAC&nbsp;program. To achieve our objectives, we will work on four interrelated tasks:</p><ul><li>Signal and background characterization: Characterize the production and transmission of muons and secondary particle backgrounds&nbsp;made by cosmic ray showers in SSBs;</li><li>Imaging studies: Develop methods to determine the density structure of SSB interiors and near-surface features from radiographic and&nbsp;tomographic data;</li><li>Instrument design: Using simulations and bench-top laboratory experiments, investigate specific concepts for the design of compact&nbsp;hodoscopes that can be deployed on a spacecraft or in situ;</li><li>Synthesis: Determine the range of applicability of the concept, identify the steps needed for maturation of the concept, and explore&nbsp;concepts for a pilot muography mission.</li></ul><p>Successful implementation of SSB muography requires a thorough understanding of muon production and transmission as well as&nbsp;sources of background. Phase I demonstrated that muon production is sensitive to the density of the top-most meter of the regolith.&nbsp;Thus, unknown variations in regolith density may obscure interior structure. Limb imaging of muons and the use of radar data&nbsp;to remotely map near-surface density will be explored as possible ways to mitigate variations in muon production. A compact,&nbsp;inexpensive system that could be deployed on a spacecraft or in situ appears to be feasible and warrants further study. A successful&nbsp;design must be capable of separately measuring the transmitted muon signal from the primary GCRs and secondary particles that&nbsp;scatter into the field-of-view of the hodoscope. This can be accomplished, for example, using Cherenkov radiators to reject lower&nbsp;energy scattered particles and to determine particle direction. Concepts for imaging systems identified in Phase I will be scrutinized.</p><p>Phase II will be carried out by a multidisciplinary project team with broad experience in cosmic ray physics, remote sensing,&nbsp;meteoritics and planetary science. While the development of muography for SSBs is risky, the potential benefits are significant.&nbsp;There are presently no established methods to directly characterize the interior structure and macroporosity of an asteroid or comet.&nbsp;Muography could provide a direct and cost-effective means of probing the interior density structure.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

References

http://techport.nasa.gov/home
http://techport.nasa.gov/doc/home/TechPort_Advanced_Search.pdf
http://techport.nasa.gov/fetchFile?objectId=6561
http://techport.nasa.gov/fetchFile?objectId=3456
http://techport.nasa.gov/fetchFile?objectId=3447
http://techport.nasa.gov/fetchFile?objectId=6584
http://techport.nasa.gov/fetchFile?objectId=6560
http://techport.nasa.gov/fetchFile?objectId=3448

Dates

Metadata Created Date November 12, 2020
Metadata Updated Date April 10, 2025

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date April 10, 2025
Publisher Space Technology Mission Directorate
Maintainer
Identifier TECHPORT_14336
Data First Published 2014-08-01
Data Last Modified 2025-03-31
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id e2783ff2-d5c4-4e88-8818-f24b4323381c
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL http://techport.nasa.gov/view/14336
Program Code 026:000
Related Documents http://techport.nasa.gov/home, http://techport.nasa.gov/doc/home/TechPort_Advanced_Search.pdf, http://techport.nasa.gov/fetchFile?objectId=6561, http://techport.nasa.gov/fetchFile?objectId=3456, http://techport.nasa.gov/fetchFile?objectId=3447, http://techport.nasa.gov/fetchFile?objectId=6584, http://techport.nasa.gov/fetchFile?objectId=6560, http://techport.nasa.gov/fetchFile?objectId=3448
Source Datajson Identifier True
Source Hash 16fbb7aefaff6f5b1b2ea7eb6bc66fada35543e43213a9d53a3ccd7e042a0b9b
Source Schema Version 1.1
Temporal 2014-08-01T00:00:00Z/2016-07-01T00:00:00Z

Didn't find what you're looking for? Suggest a dataset here.