The main dataset is a 232 MB file of trajectory data (I395-final.csv) that contains position, speed, and acceleration data for non-automated passenger cars, trucks, buses, and automated vehicles on an expressway within an urban environment. Supporting files include an aerial reference image (I395_ref_image.png) and a list of polygon boundaries (I395_boundaries.csv) and associated images (I395_lane-1, I395_lane-2, …, I395_lane-6) stored in a folder titled “Annotation on Regions.zip” to map physical roadway segments to the numerical lane IDs referenced in the trajectory dataset. In the boundary file, columns “x1” to “x5” represent the horizontal pixel values in the reference image, with “x1” being the leftmost boundary line and “x5” being the rightmost boundary line, while the column "y" represents corresponding vertical pixel values. The origin point of the reference image is located at the top left corner. The dataset defines five lanes with five boundaries. Lane -6 corresponds to the area to the left of “x1”. Lane -5 corresponds to the area between “x1” and “x2”, and so forth to the rightmost lane, which is defined by the area to the right of “x5” (Lane -2). Lane -1 refers to vehicles that go onto the shoulder of the merging lane (Lane -2), which are manually separated by watching the videos.
This dataset was collected as part of the Third Generation Simulation Data (TGSIM): A Closer Look at the Impacts of Automated Driving Systems on Human Behavior project. During the project, six trajectory datasets capable of characterizing human-automated vehicle interactions under a diverse set of scenarios in highway and city environments were collected and processed. For more information, see the project report found here: https://rosap.ntl.bts.gov/view/dot/74647. This dataset, which was one of the six collected as part of the TGSIM project, contains data collected from six 4K cameras mounted on tripods, positioned on three overpasses along I-395 in Washington, D.C. The cameras captured distinct segments of the highway, and their combined overlapping and non-overlapping footage resulted in a continuous trajectory for the entire section covering 0.5 km. This section covers a major weaving/mandatory lane-changing between L'Enfant Plaza and 4th Street SW, with three lanes in the eastbound direction and a major on-ramp on the left side. In addition to the on-ramp, the section covers an off-ramp on the right side. The expressway includes one diverging lane at the beginning of the section on the right side and one merging lane in the middle of the section on the left side. For the purposes of data extraction, the shoulder of the merging lane is also considered a travel lane since some vehicles illegally use it as an extended on-ramp to pass other drivers (see I395_ref_image.png for details). The cameras captured continuous footage during the morning rush hour (8:30 AM-10:30 AM ET) on a sunny day. During this period, vehicles equipped with SAE Level 2 automation were deployed to travel through the designated section to capture the impact of SAE Level 2-equipped vehicles on adjacent vehicles and their behavior in congested areas, particularly in complex merging sections. These vehicles are indicated in the dataset.
As part of this dataset, the following files were provided:
I395-final.csv contains the numerical data to be used for analysis that includes vehicle level trajectory data at every 0.1 second. Vehicle type, width, and length are provided with instantaneous ___location, speed, and acceleration data. All distance measurements (width, length, ___location) were converted from pixels to meters using the following conversion factor: 1 pixel = 0.3-meter conversion.
I395_ref_image.png is the aerial reference image that defines the geographic region and the associated roadway segments.
I395_boundaries.csv contains the coordinates that define the roadway segments (n=X). The columns "x1" to "x5" represent the horizontal pi