Module of covariants: Difference between revisions

Content deleted Content added
Added tags to the page using Page Curation (one source)
 
(13 intermediate revisions by 8 users not shown)
Line 1:
In [[algebra]], given an [[algebraic group]] ''G'', a [[group representation|''G''-module]] ''M'' and a ''G''-algebra ''A'', all over a [[field (mathematics)|field]] ''k'', the '''module of covariants''' of type ''M'' is the <math>A^G</math>-module
{{one source|date=July 2014}}
 
{{orphan|date=June 2014}}
In algebra, given an algebraic group ''G'', a ''G''-module ''M'' and a ''G''-algebra ''A'', the '''module of covariants''' of type ''M'' is the <math>A^G</math>-module
 
: <math>(M \otimes_k A)^G.</math>
 
where <math>-^G</math> refers to taking the elements fixed by the action of ''G''; thus, <math>A^G</math> is the [[ring of invariants]] of ''A''.
 
== See also ==
*[[localLocal cohomology]]
 
== References ==
* M. Brion, ''Sur les modules de covariants'', Ann. Sci. École Norm. Sup. (4) 26 (1993), 1 21.
* M. Van den Bergh, ''Modules of covariants'', Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zurich, 1994), Birkhauser, Basel, pp.&nbsp;352–362, 1995.
 
[[Category:Module theory]]
 
{{algebra-stub}}
 
{{linear-algebra-stub}}
{{Uncategorized|date=June 2014}}