Content deleted Content added
Terminology |
mNo edit summary Tags: Visual edit Mobile edit Mobile web edit Advanced mobile edit |
||
(25 intermediate revisions by 7 users not shown) | |||
Line 1:
{{short description|Symmetric holomorphic function}}
[[File:Modular lambda function in range -3 to 3.png|thumb|Modular lambda function in the complex plane.]]
In [[mathematics]], the '''modular lambda''' function λ(τ)<ref group="note><math>\lambda(\tau)</math> is not a [[Modular form#Modular
The q-expansion, where <math>q = e^{\pi i \tau}</math> is the [[Nome (mathematics)|nome]], is given by:
Line 42 ⟶ 43:
In terms of the half-periods of [[Weierstrass's elliptic functions]], let <math>[\omega_1,\omega_2]</math> be a [[fundamental pair of periods]] with <math>\tau=\frac{\omega_2}{\omega_1}</math>.
:<math> e_1 = \wp\left(\frac{\omega_1}{2}\right), \quad e_2 = \wp\left(\frac{\omega_2}{2}\right),\quad e_3 = \wp\left(\frac{\omega_1+\omega_2}{2}\right) </math>
we have<ref name=C108/>
Line 48 ⟶ 49:
:<math> \lambda = \frac{e_3-e_2}{e_1-e_2} \, . </math>
Since the three half-period values are distinct, this shows that
The relation to the [[j-invariant]] is<ref name=C117>Chandrasekharan (1985) p.117</ref><ref>Rankin (1977) pp.226–228</ref>
Line 55 ⟶ 56:
which is the ''j''-invariant of the elliptic curve of [[Legendre form]] <math>y^2=x(x-1)(x-\lambda)</math>
Given <math>m\in\mathbb{C}\setminus\{0,1\}</math>, let
where <math>K</math> is the [[Elliptic integral#Complete elliptic integral of the first kind|complete elliptic integral of the first kind]] with parameter <math>m=k^2</math>.
Then
:<math>\lambda (\tau)=m.</math>
==Modular equations==
Line 62 ⟶ 69:
:<math>u^6-v^6+5u^2v^2(u^2-v^2)+4uv(1-u^4v^4)=0,</math>
:<math>(1-u^8)(1-v^8)-(1-uv)^8=0.</math>
The
:<math>
&=\cfrac{\sqrt{2}e^{\pi i\tau/8}}{1+\cfrac{e^{\pi i\tau}}{1+e^{\pi i\tau}+\cfrac{e^{2\pi i\tau}}{1+e^{2\pi i\tau}+\cfrac{e^{3\pi i\tau}}{1+e^{3\pi i\tau}+\ddots}}}}\end{align}</math>
Since <math>\lambda(i)=1/2</math>, the modular equations can be used to give [[Algebraic number|algebraic values]] of <math>\lambda(pi)</math> for any prime <math>p</math>.<ref group="note">For any [[prime power]], we can iterate the modular equation of degree <math>p</math>. This process can be used to give algebraic values of <math>\lambda (ni)</math> for any <math>n\in\mathbb{N}.</math></ref>
:<math>\lambda (ni)=\frac{1}{2^n}\prod_{k=1}^{n-1} \left(1-\operatorname{sl}^2\frac{k\varpi}{n}\right)^2</math>▼
:<math>\lambda (ni)=\prod_{k=1}^{n/2} \operatorname{sl}^8\frac{(2k-1)\varpi}{2n}\quad (n\,\text{even})</math>
where <math>\operatorname{sl}</math> is the [[Lemniscate elliptic functions|lemniscate sine]] and <math>\varpi</math> is the [[Lemniscate elliptic functions#Lemniscate constant|lemniscate constant]].▼
▲:<math>\lambda (ni)=\frac{1}{2^n}\prod_{k=1}^{n-1} \left(1-\operatorname{sl}^2\frac{k\varpi}{n}\right)^2\quad (n\,\text{odd})</math>
▲where <math>\operatorname{sl}</math> is the [[Lemniscate elliptic functions|lemniscate sine]] and <math>\varpi</math> is the [[
==Lambda-star==
Line 72 ⟶ 81:
===Definition and computation of lambda-star===
The function
:<math>\frac{K\left[\sqrt{1-\lambda^*(x)^2}\right]}{K[\lambda^*(x)]} = \sqrt{x}</math>
The values of
:<math>\lambda^*(x) = \frac{\theta^2_2(i\sqrt{x})}{\theta^2_3(i\sqrt{x})} </math>
Line 84 ⟶ 93:
:<math>\lambda^*(x) = \left[\sum_{a=-\infty}^\infty\operatorname{sech}[(a+1/2)\pi\sqrt{x}]\right]\left[\sum_{a=-\infty}^\infty\operatorname{sech}(a\pi\sqrt{x})\right]^{-1} </math>
The functions
:<math>\lambda^*(x) = \sqrt{\lambda(i\sqrt{x})}</math>
Line 90 ⟶ 99:
===Properties of lambda-star===
Every
:<math>\lambda^*(x \in \mathbb{Q}^+) \in \mathbb{A}^+.</math>
<math>K(\lambda^*(x))</math> and <math>E(\lambda^*(x))</math> (the [[Elliptic integral#Complete elliptic integral of the second kind|complete elliptic integral of the second kind]]) can be expressed in closed form in terms of the [[gamma function]] for any <math>x\in\mathbb{Q}^+</math>, as Selberg and Chowla proved in 1949.<ref>{{Cite
:<math>\sqrt{n} = \sum_{a = 1}^{n} \operatorname{dn}\left[\frac{2a}{n}K\left[\lambda^*\left(\frac{1}{n}\right)\right];\lambda^*\left(\frac{1}{n}\right)\right] </math>
By knowing one
:<math>\lambda^*(n^2x) = \lambda^*(x)^n\prod_{a=1}^{n}\operatorname{sn}\left\{\frac{2a-1}{n}K[\lambda^*(x)];\lambda^*(x)\right\}^2 </math>
Further relations:
Line 119 ⟶ 127:
:<math>\lambda^*(x) - \lambda^*(9x) = 2[\lambda^*(x)\lambda^*(9x)]^{1/4} - 2[\lambda^*(x)\lambda^*(9x)]^{3/4}</math>
<math display=block>\begin{align}
&a^{8}+b^{8}-7a^4b^4 = 2\sqrt{2}ab+2\sqrt{2}a^7b^7\, &\left(a = \left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/12}\right) &\left(b = \left[\frac{2\lambda^*(49x)}{1-\lambda^*(49x)^2}\right]^{1/12}\right) \\
\end{align}
</math>
{{Collapse top|title=Special values}}
▲:<math>(a^2-d^2)(a^4+d^4-7a^2d^2)[(a^2-d^2)^4-a^2d^2(a^2+d^2)^2] = 8ad+8a^{13}d^{13}\, \left(a = \left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/12}\right) \left(d = \left[\frac{2\lambda^*(169x)}{1-\lambda^*(169x)^2}\right]^{1/12}\right) </math>
===Ramanujan's class invariants===▼
[[Srinivasa Ramanujan|Ramanujan's]] class invariants <math>G_n</math> and <math>g_n</math> are defined as <ref>{{cite journal |last1=Berndt |first1=Bruce C. |last2=Chan |first2=Heng Huat|last3=Zhang|first3=Liang-Cheng |date=6 June 1997 |title=Ramanujan's class invariants, Kronecker's limit formula, and modular equations|url=https://www.ams.org/journals/tran/1997-349-06/ |journal=Transactions of the American Mathematical Society|volume=349|issue=6|pages=2125–2173}}</ref>▼
:<math>G_n=2^{-1/4}e^{\pi\sqrt{n}/24}\prod_{k=0}^\infty \left(1+e^{-(2k+1)\pi\sqrt{n}}\right),</math> ▼
:<math>g_n=2^{-1/4}e^{\pi\sqrt{n}/24}\prod_{k=0}^\infty \left(1-e^{-(2k+1)\pi\sqrt{n}}\right),</math>▼
where <math>n\in\mathbb{Q}^+</math>. For such <math>n</math>, the class invariants are algebraic numbers. For example▼
▲:<math>g_{58}=\sqrt{\frac{5+\sqrt{29}}{2}}.</math>
Identities with the class invariants include<ref>{{Cite book |last1=Eymard |first1=Pierre |last2=Lafon| first2=Jean-Pierre |title=Autour du nombre Pi |language=French|publisher=HERMANN |year=1999 |isbn=2705614435}} p. 240</ref>▼
:<math>G_n=G_{1/n},\quad g_{n}=\frac{1}{g_{4/n}},\quad g_{4n}=2^{1/4}g_nG_n.</math>▼
:<math>G_n = \sin\{2\arcsin[\lambda^*(n)]\}^{-1/12} = 1\Big /\left[\sqrt[12]{2\lambda^*(n)}\sqrt[24]{1-\lambda^*(n)^2}\right] </math>▼
:<math>g_n = \tan\{2\arctan[\lambda^*(n)]\}^{-1/12} = \sqrt[12]{[1-\lambda^*(n)^2]/[2\lambda^*(n)]} </math>▼
:<math>\lambda^*(n) = \tan\left\{ \frac{1}{2}\arctan[g_n^{-12}]\right\} = \sqrt{g_n^{24}+1}-g_n^{12} </math>▼
▲Lambda-star-values of integer numbers of 4n-3-type:
:<math>\lambda^*(1) = \frac{1}{\sqrt{2}}</math>
Line 178 ⟶ 167:
:<math>\lambda^*(73) = \sin\left\{\frac{1}{2}\arcsin\left[\frac{1}{64}\left(45+5\sqrt{73}-3\sqrt{50\sqrt{73}+426}\right)^3\right]\right\}</math>
Lambda-star
:<math>\lambda^*(2) = \sqrt{2}-1</math>
Line 208 ⟶ 197:
:<math>\lambda^*(82) = \tan\left\{\frac{1}{4}\arcsin\left[\frac{1}{4761}(8\sqrt{41}-51)^2\right]\right\}</math>
Lambda-star
:<math>\lambda^*(3) = \frac{1}{2\sqrt{2}}(\sqrt{3}-1)</math>
Line 228 ⟶ 217:
:<math>\lambda^*(55) = \sin\left\{\frac{1}{2}\arcsin\left[\frac{1}{512}\left(3\sqrt{5}-3-\sqrt{6\sqrt{5}-2}\right)^3\right]\right\}</math>
Lambda-star
:<math>\lambda^*(4) = (\sqrt{2}-1)^2</math>
Line 246 ⟶ 235:
:<math>\lambda^*(32) = \tan\left\{\frac{1}{2}\arcsin\left[\left(\sqrt{2}+1-\sqrt{2\sqrt{2}+2}\right)^2\right]\right\}^2</math>
Lambda-star
:<math>\lambda^*\left(\frac{1}{2}\right) = \sqrt{2\sqrt{2}-2}</math>
Line 265 ⟶ 254:
:<math>\lambda^*\left(\frac{4}{5}\right) = \tan\left[\frac{\pi}{4}-\frac{1}{4}\arcsin(\sqrt{5}-2)\right]^2</math>
{{Collapse bottom}}
▲===Ramanujan's class invariants===
▲[[Srinivasa Ramanujan|Ramanujan's]] class invariants <math>G_n</math> and <math>g_n</math> are defined as
▲:<math>G_n=2^{-1/4}e^{\pi\sqrt{n}/24}\prod_{k=0}^\infty \left(1+e^{-(2k+1)\pi\sqrt{n}}\right),</math>
▲:<math>g_n=2^{-1/4}e^{\pi\sqrt{n}/24}\prod_{k=0}^\infty \left(1-e^{-(2k+1)\pi\sqrt{n}}\right),</math>
▲where <math>n\in\mathbb{Q}^+</math>. For such <math>n</math>, the class invariants are algebraic numbers. For example
:<math>g_{58}=\sqrt{\frac{5+\sqrt{29}}{2}}, \quad g_{190}=\sqrt{(\sqrt{5}+2)(\sqrt{10}+3)}.</math>
▲Identities with the class invariants include<ref>{{Cite book |last1=Eymard |first1=Pierre |last2=Lafon| first2=Jean-Pierre |title=Autour du nombre Pi |language=French|publisher=HERMANN |year=1999 |isbn=2705614435}} p. 240</ref>
▲:<math>G_n=G_{1/n},\quad g_{n}=\frac{1}{g_{4/n}},\quad g_{4n}=2^{1/4}g_nG_n.</math>
The class invariants are very closely related to the [[Weber modular function|Weber modular functions]] <math>\mathfrak{f}</math> and <math>\mathfrak{f}_1</math>. These are the relations between lambda-star and the class invariants:
▲:<math>G_n = \sin\{2\arcsin[\lambda^*(n)]\}^{-1/12} = 1\Big /\left[\sqrt[12]{2\lambda^*(n)}\sqrt[24]{1-\lambda^*(n)^2}\right] </math>
▲:<math>g_n = \tan\{2\arctan[\lambda^*(n)]\}^{-1/12} = \sqrt[12]{[1-\lambda^*(n)^2]/[2\lambda^*(n)]} </math>
▲:<math>\lambda^*(n) = \tan\left\{ \frac{1}{2}\arctan[g_n^{-12}]\right\} = \sqrt{g_n^{24}+1}-g_n^{12} </math>
== Other appearances ==
|