Content deleted Content added
mNo edit summary Tags: Visual edit Mobile edit Mobile web edit Advanced mobile edit |
|||
(16 intermediate revisions by 6 users not shown) | |||
Line 1:
{{short description|Symmetric holomorphic function}}
[[File:Modular lambda function in range -3 to 3.png|thumb|Modular lambda function in the complex plane.]]
In [[mathematics]], the '''modular lambda''' function λ(τ)<ref group="note><math>\lambda(\tau)</math> is not a [[Modular form#Modular functions|modular function]] (per the Wikipedia definition), but every modular function is a [[rational function]] in <math>\lambda(\tau)</math>. Some authors use a non-equivalent definition of "modular functions".</ref> is a highly symmetric [[holomorphic function]] on the complex [[upper half-plane]]. It is invariant under the fractional linear action of the [[congruence subgroup|congruence group]] Γ(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the [[modular curve]] ''X''(2). Over any point τ, its value can be described as a [[cross ratio]] of the branch points of a ramified double cover of the projective line by the [[elliptic curve]] <math>\mathbb{C}/\langle 1, \tau \rangle</math>, where the map is defined as the quotient by the [−1] involution.
The q-expansion, where <math>q = e^{\pi i \tau}</math> is the [[Nome (mathematics)|nome]], is given by:
Line 42 ⟶ 43:
In terms of the half-periods of [[Weierstrass's elliptic functions]], let <math>[\omega_1,\omega_2]</math> be a [[fundamental pair of periods]] with <math>\tau=\frac{\omega_2}{\omega_1}</math>.
:<math> e_1 = \wp\left(\frac{\omega_1}{2}\right), \quad e_2 = \wp\left(\frac{\omega_2}{2}\right),\quad e_3 = \wp\left(\frac{\omega_1+\omega_2}{2}\right) </math>
we have<ref name=C108/>
Line 48 ⟶ 49:
:<math> \lambda = \frac{e_3-e_2}{e_1-e_2} \, . </math>
Since the three half-period values are distinct, this shows that
The relation to the [[j-invariant]] is<ref name=C117>Chandrasekharan (1985) p.117</ref><ref>Rankin (1977) pp.226–228</ref>
Line 55 ⟶ 56:
which is the ''j''-invariant of the elliptic curve of [[Legendre form]] <math>y^2=x(x-1)(x-\lambda)</math>
Given <math>m\in\mathbb{C}\setminus\{0,1\}</math>, let
:<math>\tau=i\frac{K\{1-m\}}{K\{m\}}</math>
where <math>K</math> is the [[Elliptic integral#Complete elliptic integral of the first kind|complete elliptic integral of the first kind]] with parameter <math>m=k^2</math>.
Then
:<math>\lambda (\tau)=m.</math>
==Modular equations==
Line 62 ⟶ 69:
:<math>u^6-v^6+5u^2v^2(u^2-v^2)+4uv(1-u^4v^4)=0,</math>
:<math>(1-u^8)(1-v^8)-(1-uv)^8=0.</math>
The
:<math>
Since <math>\lambda(i)=1/2</math>, the modular equations can be used to give [[Algebraic number|algebraic values]] of <math>\lambda(pi)</math> for any prime <math>p</math>.<ref group="note">For any [[prime power]], we can iterate the modular equation of degree <math>p</math>. This process can be used to give algebraic values of <math>\lambda (ni)</math> for any <math>n\in\mathbb{N}.</math></ref> The algebraic values of <math>\lambda(ni)</math> are also given by<ref name="Jacobi">{{Cite book |last1=Jacobi |first1=Carl Gustav Jacob |author-link=Carl Gustav Jacob Jacobi|title=Fundamenta nova theoriae functionum ellipticarum|language=Latin|year=1829}} p. 42</ref><ref group="note"><math>\operatorname{sl}a\varpi</math> is algebraic for every <math>a\in\mathbb{Q}.</math></ref>
:<math>\lambda (ni)=\prod_{k=1}^{n/2} \operatorname{sl}^8\frac{(2k-1)\varpi}{2n}\quad (n\,\text{even})</math>
:<math>\lambda (ni)=\frac{1}{2^n}\prod_{k=1}^{n-1} \left(1-\operatorname{sl}^2\frac{k\varpi}{n}\right)^2\quad (n\,\text{odd})</math>
where <math>\operatorname{sl}</math> is the [[Lemniscate elliptic functions|lemniscate sine]] and <math>\varpi</math> is the [[
==Lambda-star==
Line 74 ⟶ 81:
===Definition and computation of lambda-star===
The function
:<math>\frac{K\left[\sqrt{1-\lambda^*(x)^2}\right]}{K[\lambda^*(x)]} = \sqrt{x}</math>
The values of
:<math>\lambda^*(x) = \frac{\theta^2_2(i\sqrt{x})}{\theta^2_3(i\sqrt{x})} </math>
Line 86 ⟶ 93:
:<math>\lambda^*(x) = \left[\sum_{a=-\infty}^\infty\operatorname{sech}[(a+1/2)\pi\sqrt{x}]\right]\left[\sum_{a=-\infty}^\infty\operatorname{sech}(a\pi\sqrt{x})\right]^{-1} </math>
The functions
:<math>\lambda^*(x) = \sqrt{\lambda(i\sqrt{x})}</math>
Line 92 ⟶ 99:
===Properties of lambda-star===
Every
:<math>\lambda^*(x \in \mathbb{Q}^+) \in \mathbb{A}^+.</math>
<math>K(\lambda^*(x))</math> and <math>E(\lambda^*(x))</math> (the [[Elliptic integral#Complete elliptic integral of the second kind|complete elliptic integral of the second kind]]) can be expressed in closed form in terms of the [[gamma function]] for any <math>x\in\mathbb{Q}^+</math>, as Selberg and Chowla proved in 1949.<ref>{{Cite
:<math>\sqrt{n} = \sum_{a = 1}^{n} \operatorname{dn}\left[\frac{2a}{n}K\left[\lambda^*\left(\frac{1}{n}\right)\right];\lambda^*\left(\frac{1}{n}\right)\right] </math>
By knowing one
:<math>\lambda^*(n^2x) = \lambda^*(x)^n\prod_{a=1}^{n}\operatorname{sn}\left\{\frac{2a-1}{n}K[\lambda^*(x)];\lambda^*(x)\right\}^2 </math>
Further relations:
Line 121 ⟶ 127:
:<math>\lambda^*(x) - \lambda^*(9x) = 2[\lambda^*(x)\lambda^*(9x)]^{1/4} - 2[\lambda^*(x)\lambda^*(9x)]^{3/4}</math>
<math display=block>\begin{align}
& a^{6}-f^{6} = 2af +2a^5f^5\, &\left(a = \left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/12}\right) &\left(f = \left[\frac{2\lambda^*(25x)}{1-\lambda^*(25x)^2}\right]^{1/12}\right) \\
\end{align}
</math>
{{Collapse top|title=Special values}}
Lambda-star
:<math>\lambda^*(1) = \frac{1}{\sqrt{2}}</math>
Line 159 ⟶ 167:
:<math>\lambda^*(73) = \sin\left\{\frac{1}{2}\arcsin\left[\frac{1}{64}\left(45+5\sqrt{73}-3\sqrt{50\sqrt{73}+426}\right)^3\right]\right\}</math>
Lambda-star
:<math>\lambda^*(2) = \sqrt{2}-1</math>
Line 189 ⟶ 197:
:<math>\lambda^*(82) = \tan\left\{\frac{1}{4}\arcsin\left[\frac{1}{4761}(8\sqrt{41}-51)^2\right]\right\}</math>
Lambda-star
:<math>\lambda^*(3) = \frac{1}{2\sqrt{2}}(\sqrt{3}-1)</math>
Line 209 ⟶ 217:
:<math>\lambda^*(55) = \sin\left\{\frac{1}{2}\arcsin\left[\frac{1}{512}\left(3\sqrt{5}-3-\sqrt{6\sqrt{5}-2}\right)^3\right]\right\}</math>
Lambda-star
:<math>\lambda^*(4) = (\sqrt{2}-1)^2</math>
Line 227 ⟶ 235:
:<math>\lambda^*(32) = \tan\left\{\frac{1}{2}\arcsin\left[\left(\sqrt{2}+1-\sqrt{2\sqrt{2}+2}\right)^2\right]\right\}^2</math>
Lambda-star
:<math>\lambda^*\left(\frac{1}{2}\right) = \sqrt{2\sqrt{2}-2}</math>
|