Content deleted Content added
mNo edit summary Tags: Visual edit Mobile edit Mobile web edit Advanced mobile edit |
|||
(5 intermediate revisions by 4 users not shown) | |||
Line 1:
{{short description|Symmetric holomorphic function}}
[[File:Modular lambda function in range -3 to 3.png|thumb|Modular lambda function in the complex plane.]]
In [[mathematics]], the '''modular lambda''' function λ(τ)<ref group="note><math>\lambda(\tau)</math> is not a [[Modular form#Modular functions|modular function]] (per the Wikipedia definition), but every modular function is a [[rational function]] in <math>\lambda(\tau)</math>. Some authors use a non-equivalent definition of "modular functions".</ref> is a highly symmetric [[holomorphic function]] on the complex [[upper half-plane]]. It is invariant under the fractional linear action of the [[congruence subgroup|congruence group]] Γ(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the [[modular curve]] ''X''(2). Over any point τ, its value can be described as a [[cross ratio]] of the branch points of a ramified double cover of the projective line by the [[elliptic curve]] <math>\mathbb{C}/\langle 1, \tau \rangle</math>, where the map is defined as the quotient by the [−1] involution.
The q-expansion, where <math>q = e^{\pi i \tau}</math> is the [[Nome (mathematics)|nome]], is given by:
Line 102 ⟶ 103:
:<math>\lambda^*(x \in \mathbb{Q}^+) \in \mathbb{A}^+.</math>
<math>K(\lambda^*(x))</math> and <math>E(\lambda^*(x))</math> (the [[Elliptic integral#Complete elliptic integral of the second kind|complete elliptic integral of the second kind]]) can be expressed in closed form in terms of the [[gamma function]] for any <math>x\in\mathbb{Q}^+</math>, as Selberg and Chowla proved in 1949.<ref>{{Cite
The following expression is valid for all <math>n \in \mathbb{N}</math>:
|