Modular lambda function: Difference between revisions

Content deleted Content added
OAbot (talk | contribs)
m Open access bot: pmc updated in citation with #oabot.
Bumpf (talk | contribs)
mNo edit summary
Tags: Visual edit Mobile edit Mobile web edit Advanced mobile edit
 
(One intermediate revision by one other user not shown)
Line 1:
{{short description|Symmetric holomorphic function}}
[[File:Modular lambda function in range -3 to 3.png|thumb|Modular lambda function in the complex plane.]]
In [[mathematics]], the '''modular lambda''' function λ(τ)<ref group="note><math>\lambda(\tau)</math> is not a [[Modular form#Modular functions|modular function]] (per the Wikipedia definition), but every modular function is a [[rational function]] in <math>\lambda(\tau)</math>. Some authors use a non-equivalent definition of "modular functions".</ref> is a highly symmetric [[Holomorphicholomorphic function]] on the complex [[upper half-plane]]. It is invariant under the fractional linear action of the [[congruence subgroup|congruence group]] &Gamma;(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the [[modular curve]] ''X''(2). Over any point τ, its value can be described as a [[cross ratio]] of the branch points of a ramified double cover of the projective line by the [[elliptic curve]] <math>\mathbb{C}/\langle 1, \tau \rangle</math>, where the map is defined as the quotient by the [&minus;1] involution.
 
The q-expansion, where <math>q = e^{\pi i \tau}</math> is the [[Nome (mathematics)|nome]], is given by: