Content deleted Content added
No edit summary |
m Moving Category:Numerical integration (quadrature) to Category:Numerical integration per Wikipedia:Categories for discussion/Speedy |
||
(23 intermediate revisions by 11 users not shown) | |||
Line 1:
{{short description|Numerical method for differential equations}}
In [[numerical analysis]], the '''local linearization (LL) method''' is a general strategy for designing [[Numerical integration|numerical integrators]] for differential equations based on a local (piecewise) linearization of the given equation on consecutive time intervals. The numerical integrators are then iteratively defined as the solution of the resulting piecewise linear equation at the end of each consecutive interval. The LL method has been developed for a variety of equations such as the [[Ordinary differential equation|ordinary]], [[Delay differential equation|delayed]], random and [[Stochastic differential equation|stochastic]] differential equations. The LL integrators are key component in the implementation of [[Estimation theory|inference methods]] for the estimation of unknown parameters and unobserved variables of differential equations given [[time series]] of (potentially noisy) observations. The LL schemes are ideals to deal with complex models in a variety of fields as [[neuroscience]], [[finance]], [[Forestry|forestry management]], [[control engineering]], [[mathematical statistics]], etc.
Line 28:
<div style="text-align: center;">
<math>\mathbf{x}(
</math>
</div>
Line 36 ⟶ 35:
<div style="text-align: center;">
<math>\mathbf{\phi }(
\qquad</math>
</div>
Line 45 ⟶ 42:
<div style="text-align: center;">
<math>\mathbf{r}(
</div>
is the residual of the linear approximation. Here, <math>\mathbf{f}_{\mathbf{x}}</math> and <math>\mathbf{f}_{t}</math> denote the partial derivatives of '''f''' with respect to the variables '''x''' and ''t'', respectively, and <math>\mathbf{g}_n(s,\mathbf{u})=\mathbf{f}(s,\mathbf{u})-\mathbf{f}_{\mathbf{x}}(t_n,\mathbf{z}_n) \mathbf{u}-\mathbf{f}_t (t_n,\mathbf{z}_n) (s-t_n)-\mathbf{f}(t_n,\mathbf{z}_n) +\mathbf{f}_{\mathbf{x}}(t_n,\mathbf{z}_n)\mathbf{z}_n. </math>
=== Local
For a time discretization <math>\left( t\right) _{h}</math>, the ''Local Linear discretization'' of the ODE (4.1) at each point <math>t_{n+1}\in \left(
t\right) _{h}</math> is defined by the recursive expression <ref name=":8">Jimenez J.C. (2009). "Local Linearization methods for the numerical integration of ordinary differential equations: An overview". [https://inis.iaea.org/search/search.aspx?orig_q=RN:40101978 ICTP Technical Report]. 035: 357–373.</ref>
<div style="text-align: center;">
<math>\mathbf{z}_{n+1}=\mathbf{z}
\qquad \text{ with } \quad \mathbf{z}
</div>
The Local Linear discretization (4.3) [[Rate of convergence|converges]] with order '''''2''''' to the solution of nonlinear ODEs, but it match the solution of the linear ODEs. The recursion (4.3) is also known as Exponential Euler discretization.<ref name=":22" />
=== High-order local linear discretizations ===
For a time discretization <math>(t)_h,</math> a ''high-order local linear (HOLL)'' discretization of the ODE (4.1) at each point <math>t_{n+1} \in (t)_h</math> is defined by the recursive expression <ref name= ":8"/><ref name= ":3"/><ref name= ":2"/><ref name=":1" />
<div style="text-align: center;">
<math>\mathbf{z}_{n+1}=\mathbf{z}
</div>
where <math>\tilde{r}</math> is an order <math>\alpha </math> (> '''2''') approximation to the residual '''r''' <math>(i.e., \left\vert \mathbf{r}(
HOLL discretizations can be derived in two ways:<ref name= ":8"/><ref name= ":3"/><ref name= ":2"/><ref name=":1" /> 1) (quadrature-based) by approximating the integral representation (4.2) of '''r'''; and 2) (integrator-based) by using a numerical integrator for the differential representation of '''r''' defined by
<div style="text-align: center;">
<math>\frac{d\mathbf{r}(t) }{dt} = \mathbf{q}(t_n,\mathbf{z}_n;t \mathbf{,\mathbf{r}}(t) \mathbf), \qquad \text{ with } \qquad \mathbf{r}(t_n) =\mathbf{0,} \qquad \qquad \qquad (4.5)</math>
</div>
Line 100 ⟶ 85:
HOLL discretizations are, for instance, the followings:
* ''Locally Linearized Runge Kutta discretization''<ref name=":1">de la Cruz H.; Biscay R.J.; Carbonell F.; Jimenez J.C.; Ozaki T. (2006). "Local Linearization-Runge Kutta (LLRK) methods for solving ordinary differential equations". Lecture Note in Computer Sciences 3991: 132–139, Springer-Verlag. [[doi:10.1007/
<div style="text-align: left;">
<math>\qquad \mathbf{z}_{n+1}=\mathbf{z}
</div>
which is obtained by solving (4.5) via a s-stage explicit [[Runge–Kutta methods|Runge–Kutta (RK) scheme]] with coefficients <math>\mathbf{c}=\left[ c_{i}\right] , \mathbf{A}=\left[ a_{ij}\right] \quad and \quad \mathbf{b}=\left[ b_{j}\right]</math>.
* ''Local
<div style="text-align: center;">
<math display="block">\mathbf{z}_{n+1}=\mathbf{z}_n+\mathbf{\phi}(t_n,\mathbf{z}_n;h_n)+\int_0^{h_n}e^{(h_n-s) \mathbf{f}_{\mathbf{x}} \left( t_n,\mathbf{z}_n\right) } \sum_{j=2}^p\frac{\mathbf{c}_{n,j}}{j!} s^j \, ds,\text{ with } \mathbf{c}_{n,j}=\left( \frac{d^{j+1}\mathbf{x}(t)}{dt^{j+1}}-\mathbf{f}_{\mathbf{x}} (t_n,\mathbf{z}_n) \frac{d^{j}\mathbf{x}(t) }{dt^j}\right) \mid _{t=\mathbf{z}_n}, </math>
</div>
which results from the approximation of <math>\mathbf{g}_{n}</math> in (4.2) by its order-''p'' truncated [[Taylor series|Taylor expansion]].
* ''Multistep-type exponential propagation discretization''
<div style="text-align: center;">
<math display="inline">\mathbf{z}_{n+1}=\mathbf{z}
}_{n}
\begin{array}{c}
-\theta \\
Line 137 ⟶ 110:
</div>
which results from the interpolation of <math>\mathbf{g}_{n}</math> in (4.2) by a polynomial of degree ''p'' on <math>t_{n},\ldots, t_{n-p+1}</math>, where <math>\nabla ^{j}\mathbf{g}_{n}(t_{m},\mathbf{z}_{m})</math> denotes the ''j''-th [[backward difference]] of <math>\mathbf{g}_{n}(t_{m},\mathbf{z}_{m})</math>.
* ''Runge Kutta type Exponential Propagation discretization'' <ref name=":17">Tokman M. (2006). "Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods". J. Comput. Physics. 213 (2): 748–776. [[doi:10.1016/j.jcp.2005.08.032
<div style="text-align: center;">
<math display="inline">\mathbf{z}_{n+1}=\mathbf{z}
\begin{array}{c}
\theta p\\
Line 154 ⟶ 123:
</div>
which results from the interpolation of <math>\mathbf{g}_{n}</math> in (4.2) by a polynomial of degree ''p'' on <math>t_{n},\ldots, t_{n}+(p-1)h/p</math>,
* ''Linealized exponential Adams discretization''<ref name=":7">M. Hochbruck.; A. Ostermann. (2011). "Exponential multistep methods of Adams-type". BIT Numer. Math. 51 (4): 889–908. [[doi:10.1007/s10543-011-0332-6
<div style="text-align: center;">
<math display="inline">\mathbf{z}_{n+1}=\mathbf{z}
\begin{array}{c}
-\theta \\
Line 171 ⟶ 136:
</div>
which results from the interpolation of <math>\mathbf{g}_{n}</math> in (4.2) by a [[Hermite polynomials|Hermite polynomial]] of degree ''p'' on <math>t_{n},\ldots, t_{n-p+1}</math>.
=== Local
All numerical implementation <math>\mathbf{y}_{n}</math> of the LL (or of a HOLL) discretization <math>\mathbf{z}_{n}</math> involves approximations <math>\widetilde{\phi
<div style="text-align: center;">
<math>\
</div>
where '''A''' is a ''d
==== Computing integrals involving matrix exponential ====
Among a number of algorithms to compute the integrals <math>\phi _{j}</math>, those based on rational Padé and Krylov subspaces approximations for exponential matrix are preferred. For this, a central role is playing by the expression<ref>Carbonell F.; Jimenez J.C.; Pedroso L.M. (2008). "Computing multiple integrals involving matrix exponentials". J. Comput. Appl. Math. 213: 300–305. [https://doi.org/10.1016%2Fj.cam.2007.01.007 doi:10.1016/j.cam.2007.01.007].</ref><ref name=":2">de la Cruz H.; Biscay R.J.; Carbonell F.; Ozaki T.; Jimenez J.C. (2007). "A higher order Local Linearization method for solving ordinary differential equations". Appl. Math. Comput. 185: 197–212. [[doi:10.1016/j.amc.2006.06.096
<div style="text-align: center;">
<math>\sum\nolimits_{i=1}^
</div>
where <math>\mathbf{a}
<div style="text-align: center;">
Line 206 ⟶ 170:
</div>
<math>\mathbf{L}=[\mathbf{I} \quad \mathbf{0}_{d\times l}]</math>, <math>\mathbf{r}=[\mathbf{0}_{1\times (d+l-1)}\quad1]^{\intercal
If <math>\mathbf{P}_{p,q}(2^{-k}\mathbf{H}h)
</math> denotes the (''
</math> and ''k'' is the smallest natural number such that <math>|2^{-k}\mathbf{H}h|\leq \frac{1}{2}, then</math> <ref name=":12">Jimenez J.C.; de la Cruz H. (2012). "Convergence rate of strong Local Linearization schemes for stochastic differential equations with additive noise". BIT Numer. Math. 52 (2): 357–382. [[doi:10.1007/s10543-011-0360-2
<div style="text-align: center;">
<math>\left\vert \sum\nolimits_{i=1}^
\mathbf{L}\left( \mathbf{\mathbf{P}}_{p,q}(2^{-k}\mathbf{H}h)\right)
\mathbf{r}\right\vert \varpropto h^{p+q+1}.</math>
</div>
Line 220 ⟶ 184:
<div style="text-align: center;">
<math>\left\vert \sum\nolimits_{i=1}^{l}\phi _{i}(\mathbf{A},h)\mathbf{a}_i - \mathbf{L\mathbf{k}}_{
</div>
where <math>m \leq d</math> is the dimension of the Krylov subspace.
==== Order-2 LL schemes ====
<div style="text-align: center;">
<math>\mathbf{y}_{n+1}=\mathbf{y}_{n}+\mathbf{L}(\mathbf{P}_{p,q}(2^{-k_{n}}
\mathbf{M}_{n}h_{n}))^{2^{k_{n}}}\mathbf{r,} </math> <ref name=":9">Jimenez J.C.; Biscay R.; Mora C.; Rodriguez L.M. (2002). "Dynamic properties of the Local Linearization method for initial-value problems". Appl. Math. Comput. 126: 63–68. [[doi:10.1016/S0096-3003(00)00100-4
</div>
where the matrices <math>\mathbf{M}
<div style="text-align: center;">
<math>\mathbf{M}_n = \begin{bmatrix} \mathbf{f}_{\mathbf{x}}(t_n,\mathbf{y}_n) & \mathbf{f}_t(t_n,\mathbf{y}_n) & \mathbf{f}(t_n,\mathbf{y}_n) \\
0 & 0 & 1 \\
0 & 0 & 0
Line 258 ⟶ 218:
<div style="text-align: center;">
<math>\mathbf{y}_{n+1}=\mathbf{y}_{n}+\mathbf{L\mathbf{k}}
_{m_{n},k_{n}}^{p,q}(h_{n},\mathbf{M}_{n},\mathbf{r})\mathbf{,}\qquad \text{ with } \qquad m_{n}>2. </math>
</div>
==== Order-3 LL-Taylor schemes ====
<div style="text-align: center;">
<math>\mathbf{y}_{n+1}=\mathbf{y}
\mathbf{T}
</div>
where for [[Autonomous system (mathematics)|autonomous]] ODEs the matrices <math>\mathbf{T}_{n}, \mathbf{L}_{1}</math> and <math>\mathbf{r}_{1}</math> are defined as
Line 297 ⟶ 255:
<div style="text-align: center;">
<math>\mathbf{y}_{n+1}=\mathbf{y}_{n}+\mathbf{L\mathbf{k}}
_{m_{n},k_{n}}^{p,q}(h_{n},\mathbf{T}_{n},\mathbf{r})\mathbf{,}\qquad \text{ with } \qquad m_{n}>3. </math>
</div>
Line 304 ⟶ 262:
<div style="text-align: center;">
<math>\mathbf{y}_{n+1}=\mathbf{y}_{n}+\mathbf{u}_{4}+\frac{h_{n}}{6}(2\mathbf{k}
_{2}+2\mathbf{k}_{3}+\mathbf{k}_{4}),\quad</math> <ref name=":3" />
</div>
Line 334 ⟶ 292:
<div style="text-align: center;">
<math>\mathbf{y}_{n+1}=\mathbf{y}
<ref name=":15">Jimenez J.C.; Sotolongo A.; Sanchez-Bornot J.M. (2014). "Locally Linearized Runge Kutta method of Dormand and Prince". Appl. Math. Comput. 247: 589–606. [[doi:10.1016/j.amc.2014.09.001]].</ref><ref name=":16">Naranjo-Noda, Jimenez J.C. (2021) "Locally Linearized Runge_Kutta method of Dormand and Prince for large systems of initial value problems." J.Comput. Physics. 426: 109946. [[doi:10.1016/j.jcp.2020.109946]].</ref>
<math>\qquad \qquad (4.9)</math>
</div>
where ''s'' = 7
<div style="text-align: center;">
<math>\mathbf{k}
</div>
with <math>\mathbf{k}_{1}\equiv \mathbf{0}</math>, and <math>a_{j,i}, b_{j}, \widehat{b}
==== Stability and dynamics ====
[[File:Figure ODE.jpg|thumb|488x488px|'''Fig. 1''' Phase portrait (dashed line) and approximate phase portrait (solid line) of the nonlinear ODE (4.10)-(4.11) computed by the order-2 LL scheme (4.2), the order-4 classical Rugen-Kutta scheme [[Runge–Kutta methods|''RK''4]], ''and the order-4 LLRK''4 schemes (4.8) with step size h=1/2
: <math>
\begin{align}
\qquad \qquad (4.10) \\[6pt]
& \frac{dx_{2}}{dt} = x_1-2x_2+1-\mu f(x_2,\lambda) \qquad \qquad \quad (4.11)
\end{align}
</math>
with <math>f
== LL methods for DDEs ==
Line 367 ⟶ 323:
<div style="text-align: center;">
<math>\frac{d\mathbf{x}
</div>
with ''m'' constant delays <math>\
<div style="text-align: center;">
<math>\mathbf{x}
</div>
for all <math>t\in
=== Local
For a time discretization <math>
<div style="text-align: center;">
<math>\mathbf{z}_{n+1}=\mathbf{z}
\qquad \qquad (5.2) </math>
Line 404 ⟶ 349:
<div style="text-align: center;">
<math>\Phi (t_n,\mathbf{z}_n,h_n;\widetilde{\mathbf{z}}_{t_n}^1, \ldots, \widetilde{\mathbf{z}}_{t_{n}}^{m}) = \int\limits_0^{h_n}e^{\mathbf{A}_n(h_n-u)} \left[\sum\limits_{i=1}^m \mathbf{B}_n^i (\widetilde{\mathbf{z}}_{t_n}^i (u-\tau_i) -\widetilde{\mathbf{z}}_{t_n}^i (-\tau_i) )+\mathbf{d}_n\right] \, du + \int \limits_0^{h_n}\int\limits_0^u e^{\mathbf{A}_n(h_n-u)}\mathbf{c}_n \, dr \, du </math>
</div>
<math>\widetilde{\mathbf{z}}_{
<div style="text-align: center;">
<math>\widetilde{\mathbf{z}}_{
</div>
and <math>\widetilde{\mathbf{z}}^i:\left[ t_n-\tau_i,t_n\right] \longrightarrow \mathbb{R}^d</math> is a suitable approximation to <math>\mathbf{x}(t)</math> for all <math>t\in \lbrack t_n-\tau_i,t_n]</math> such that <math>\widetilde{\mathbf{z}}^i(t_n)=\mathbf{z}_n.</math> Here,<div style="text-align: center;">
<math>\mathbf{A}_n=\mathbf{f}_x(t_n,\mathbf{z}_n,\widetilde{\mathbf{z}}_{t_n}^1(-\tau_1),\ldots,\widetilde{\mathbf{z}}_{t_n}^m(-\tau_d)),
\text{ }\mathbf{B}_n^i=\mathbf{f}_{x_t(-\tau_i)}(t_n,\mathbf{z}_n,\widetilde{\mathbf{z}}_{t_n}^1(-\tau_1),\ldots,\widetilde{\mathbf{z}}_{t_n}^m(-\tau_d)) </math>
</div>
Line 441 ⟶ 368:
<div style="text-align: center;">
<math>\mathbf{c}
</div>
are constant vectors. <math>\mathbf{f}_{t}, \mathbf{f}_{x} \quad and \quad \mathbf{f}
_{x_{t}(-\tau _{i})}</math> denote, respectively, the partial derivatives of '''f''' with respect to the variables ''t'' and '''''x
\mathbf{)}-\widetilde{\mathbf{z}}_{t_{n}}^{i}\mathbf{(}u-\tau _{i}\mathbf{)}
\right\vert \propto h_{n}^{r}</math> for all <math>u\in \lbrack 0,h_{n}])</math>.
=== Local
[[File:Figure DDE.png|thumb|450x450px|'''Fig. 2''' Approximate paths of the [https://doi.org/10.1016/S0022-5193(05)80142-0 Marchuk et al. (1991)] antiviral immune model described by a stiff system of ten-dimensional nonlinear DDEs with five time delays: top, [[doi:10.1016/S0168-9274(00)00055-6|continuous
Depending
==== Order-2 polynomial LL schemes ====
<div style="text-align: center;">
<math>\mathbf{y}_{n+1}=\mathbf{y}_{n}+\mathbf{L}(\mathbf{P}_{p,q}(2^{-k_{n}} \mathbf{M}_{n}h_{n}))^{2^{k_{n}}}\mathbf{r,} \quad</math><ref name=":13" /> <math> \qquad (5.3) </math>
</div>
Line 508 ⟶ 431:
</div>
with <math>p+q>1</math> and <math>m_{n}>2</math>. Fig. 2
== LL methods for RDEs ==
Line 518 ⟶ 441:
</div>
with initial condition <math>\mathbf{x}(
\xi }</math> is a ''k''-dimensional [[Stochastic process|separable finite continuous stochastic process]], and '''f''' is a differentiable function. Suppose that a [[Realization (probability)|realization]] (path) of <math>\mathbf{\xi }</math> is given.
Line 528 ⟶ 451:
<div style="text-align: center;">
<math>\mathbf{z}_{n+1}=\mathbf{z}_{n}+\mathbf{\phi }(t_{n},\mathbf{z}_{n};h_{n}),
\qquad \text{ with } \qquad \mathbf{z}_{0}=\mathbf{x}_{0},</math>
</div>
Line 534 ⟶ 457:
<div style="text-align: center;">
<math>\mathbf{\phi }(t_n,\mathbf{z}_n;h_n)=\int\limits_0^{h_n} e^{\mathbf{f}_{\mathbf{x}} (\mathbf{z}_n,\mathbf{\xi}(t_n)) (h_n-u)}(\mathbf{f(z}_{n},\mathbf{\xi }(t_{n}))+\mathbf{f}_{\mathbf{\xi}}(\mathbf{z}_n,\mathbf{\xi }(t_{n}))(\widetilde{\mathbf{\xi }}(t_{n}+u)-\widetilde{\mathbf{\xi }}(t_n))) \, du </math>
</div>
Line 545 ⟶ 464:
\xi }</math> for all <math>t\in \left[ t_{0},T\right]. </math> Here, <math>\mathbf{f}_{x}</math> and <math>\mathbf{f}_{\xi }</math> denote the partial derivatives of <math>\mathbf{f}</math> with respect to <math>\mathbf{x}</math> and <math>\xi </math>, respectively.
=== Local
[[File:FigureRDE1.png|thumb|377x377px|'''Fig. 3''' Phase portrait of trajectories of the ''Euler'' and ''LL'' schemes in the integration of the nonlinear RDE (6.2)
Depending
==== LL schemes ====
Line 555 ⟶ 474:
<div style="text-align: center;">
<math>\mathbf{y}_{n+1}=\mathbf{y}_n+\mathbf{L}(\mathbf{P}_{p,q}(2^{-k_n} \mathbf{M}_n h_{n}))^{2^{k_n}}\mathbf{r,} \quad </math> <ref name=":24" /><ref name=":10">Jimenez J.C.; Carbonell F. (2009). "Rate of convergence of local linearization schemes for random differential equations". BIT Numer. Math. 49 (2): 357–373. [[doi:10.1007/s10543-009-0225-0]].</ref> </div>
where the matrices <math>\mathbf{M}_{n}, \quad \mathbf{L} \quad and \quad \mathbf{r}</math> are defined as
<math>\mathbf{M}_{n}=\left[
Line 570 ⟶ 487:
\end{array}
\right]</math>
<math>\mathbf{L}=\left[
Line 618 ⟶ 534:
=== Local linear discretization ===
For a time discretization <math>\left( t\right) _{h}</math> , the order-<math>\mathbb{\gamma }</math> (=1,1.5) ''Strong Local Linear discretization'' of the solution of the SDE (7.1) is defined by the recursive relation <ref name=":14">
<div style="text-align: center;">
Line 640 ⟶ 556:
<div style="text-align: center;">
<math>\mathbf{\xi
</div>
Line 650 ⟶ 563:
<div style="text-align: center;">
<math>
\mathbf{a}^{\mathbb{\gamma \left\{
\begin{
\mathbf{f}
\mathbf{f}
\end{array}
\right.
</math>
</div>
<math>\mathbf{f}_{\mathbf{x}}, \mathbf{f}
=== High-order local linear discretizations ===
After the local linearization of the drift term of (7.1) at <math>(
<div style="text-align: center;">
<math>d\mathbf{r}
</div>
for all <math>t\in \lbrack
<div style="text-align: center;">
<math>\mathbf{q}_
</div>
A ''high-order local linear discretization'' of the SDE ''(7.1)'' at each point <math>t_{n+1}\in
<div style="text-align: center;">
<math>\mathbf{z}_{n+1}=\mathbf{z}
</div>
Line 701 ⟶ 601:
where <math>\widetilde{\mathbf{r}} </math> is a strong approximation to the residual <math>\mathbf{r} </math> of order <math>\alpha </math> higher than '''1.5'''. The strong HOLL discretization <math>\mathbf{z}_{n+1} </math> converges with order <math>\alpha </math> to the solution of (7.1).
=== Local
Depending on the way of computing <math>\mathbf{\phi }_{\mathbb{\gamma }}</math> , <math>\mathbf{\xi }</math> and <math>\widetilde{\mathbf{r}}</math> different numerical schemes can be obtained. Every numerical implementation <math>\mathbf{y}_{n}</math> of a strong Local Linear discretization <math>\mathbf{z}_{n}</math> of any order is generically called ''Strong Local Linearization (SLL) scheme''.
Line 708 ⟶ 608:
<div style="text-align: center;">
<math>\mathbf{y}_{n+1}=\mathbf{y}
</div>
where the matrices <math>\mathbf{M}_{n}</math>, <math>\mathbf{L}</math> and <math>\mathbf{r}</math> are defined as in (4.6), <math>\Delta \mathbf{w}_{n}^{i}</math> is an [[Independent and identically distributed random variables|i.i.d.]] zero mean [[Normal distribution|Gaussian random variable]] with variance <math>h_{n}</math>, and ''p'' + ''q
==== Order 1.5 SLL schemes ====
<div style="text-align: center;">
<math>\mathbf{y}_{n+1} =\mathbf{y}_n+\mathbf{L}(\mathbf{P}_{p,q}(2^{-k_n} \mathbf{M}_n h_n))^{2^{k_n}}\mathbf{r}+\sum\limits_{i=1}^m\left( \mathbf{g}_i(t_n)\Delta \mathbf{w}_n^i \mathbf{f}_{\mathbf{x}}(t_n,\widetilde{\mathbf{y}}_n)\mathbf{g}_i(t_n)\Delta \mathbf{z}_n^i+\frac{d\mathbf{g}_i(t_n)}{dt} (\Delta \mathbf{w}_{n}^{i}h_{n}-\Delta \mathbf{z}_{n}^{i})\right) , \qquad \qquad (7.3)</math>
</div>
Line 733 ⟶ 624:
<div style="text-align: center;">
<math>\mathbf{M}
\begin{bmatrix}
\mathbf{f}_{\mathbf{x}}(
\mathbf{f}(t_{n},\mathbf{y}_n) \\
0 & 0 & 1 \\
0 & 0 & 0
Line 813 ⟶ 702:
==== Stability and dynamics ====
By construction, the strong LL and HOLL discretizations inherit the stability and [[Random dynamical system|dynamics]] of the linear SDEs, but it is not the case of the strong LL schemes in general. LL schemes (7.2)-(7.5) with <math>p\leq q\leq p+2 </math> are ''A''-stable, including stiff and highly oscillatory linear equations.<ref name=":12" /> Moreover, for linear SDEs with [[Pullback attractor|random attractors]], these schemes also have a random attractor that [[Convergence in probability|converges in probability]] to the exact one as the stepsize decreases and preserve the [[ergodicity]] of these equations for any stepsize.<ref name=":4" /><ref name=":12" /> These schemes also reproduce essential dynamical properties of simple and coupled harmonic oscillators such as the linear growth of energy along the paths, the oscillatory behavior around 0, the symplectic structure of Hamiltonian oscillators, and the mean of the paths.<ref name=":4" /><ref name=":5">de la Cruz H.; Jimenez J.C.; Zubelli J.P. (2017). "Locally Linearized methods for the simulation of stochastic oscillators driven by random forces". BIT Numer. Math. 57: 123–151. [[doi:10.1007/s10543-016-0620-2]].</ref> For nonlinear SDEs with small noise (i.e., (7.1) with <math>\mathbf{g}_{i}(t)\approx 0 </math>), the paths of these SLL schemes are basically the nonrandom paths of the LL scheme (4.6) for ODEs plus a small disturbance related to the small noise. In this situation, the dynamical properties of that deterministic scheme, such as the linearization preserving and the preservation of the exact solution dynamics around hyperbolic equilibrium points and periodic orbits, become relevant for the paths of the SLL scheme.<ref name=":4" /> For instance, Fig 4 shows the evolution of domains in the phase plane and the energy of the stochastic oscillator
<math>\begin{array}{ll}
Line 874 ⟶ 763:
</div>
Here, <math>\mathbf{f}_{\mathbf{x}}</math>, <math>\mathbf{f}_{t}</math> denote the partial derivatives of <math>\mathbf{f}</math> with respect to the variables <math>\mathbf{x}</math> and ''t'', respectively, <math>\mathbf{f}_{\mathbf{xx}}</math> the Hessian matrix of <math>\mathbf{f}</math> with respect to <math>\mathbf{x}</math>, and <math>\mathbf{G}(t)=[\mathbf{g}_{1}(t),
=== Local Linearization schemes ===
Line 885 ⟶ 774:
<math>\mathbf{y}_{n+1}=\mathbf{y}_{n}+\mathbf{B}_{14}+(\mathbf{B}_{12}\mathbf{B}
_{11}^{\intercal })^{1/2}\mathbf{\xi }_{n} </math>
<ref name=":11">Jimenez J.C.; Carbonell F. (2015). "Convergence rate of weak Local Linearization schemes for stochastic differential equations with additive noise". J. Comput. Appl. Math. 279: 106–122. [[doi:10.1016/j.cam.2014.10.021
</div>
where, for SDEs with autonomous diffusion coefficients, <math>\mathbf{B}_{11}</math>, <math>\mathbf{B}_{12}</math> and <math>\mathbf{B}_{14}</math> are the submatrices defined by the [[Block matrix|partitioned matrix]] <math>\mathbf{B}=\mathbf{P}_{p,q}(2^{-k_{n}}\mathcal{M}_{n}h_{n}))^{2^{k_{n}}}</math>, with
Line 910 ⟶ 799:
<math>\mathbf{y}_{n+1}=\mathbf{y}_{n}+\mathbf{B}_{16}+(\mathbf{B}_{14}\mathbf{B}
_{11}^{\intercal })^{1/2}\mathbf{\xi }_{n}, </math>
<ref name=":11" />
</div>
Line 951 ⟶ 840:
==== Stability and dynamics====
[[File:Figure WSDE.png|thumb|429x429px|'''''Fig. 5''''' Approximate mean of the SDE (8.2) computed via Monte Carlo with ''100'' simulations of various schemes with ''h=1/16'' and ''p=q=6''.]] By construction, the weak LL discretizations inherit the stability and [[Random dynamical system|dynamics]] of the linear SDEs, but it is not the case of the weak LL schemes in general. WLL schemes, with <math>p\leq q\leq p+2,</math> preserve the [[Moment (mathematics)|first two moments]] of the linear SDEs, and inherits the mean-square stability or instability that such solution may have.<ref name=":11" /> This includes, for instance, the equations of coupled harmonic oscillators driven by random force, and large systems of stiff linear SDEs that result from the method of lines for linear stochastic partial differential equations. Moreover, these WLL schemes preserve the [[ergodicity]] of the linear equations, and are geometrically ergodic for some classes of nonlinear SDEs.<ref name=":6">
<math>dx=-t^{2}x\text{ }dt+\frac{3}{2(t+1)}e^{-t^{3}/3}\text{ }dw_{t},\qquad \qquad x(0)=1, \qquad \quad(8.2)</math>
Line 960 ⟶ 849:
Below is a time line of the main developments of the Local Linearization (LL) method.
* Pope D.A. (1963) introduces the LL discretization for ODEs and the LL scheme based on Taylor expansion.
* Ozaki T. (1985) introduces the LL method for the integration and estimation of SDEs. The term "Local Linearization" is used for first time.
* Biscay R. et al. (1996) reformulate the strong LL method for SDEs.<ref name=":20">
* Shoji I. and Ozaki T. (1997) reformulate the weak LL method for SDEs.<ref name=":21">
* Hochbruck M. et al. (1998) introduce the LL scheme for ODEs based on Krylov subspace approximation.
* Jimenez J.C. (2002) introduces the LL scheme for ODEs and SDEs based on rational Padé approximation.
* Carbonell F.M. et al. (2005) introduce the LL method for RDEs.
* Jimenez J.C. et al. (2006) introduce the LL method for DDEs.
* De la Cruz H. et al. (2006, 2007) and Tokman M. (2006) introduce the two classes of HOLL integrators for ODEs: the integrator-based <ref name=":1" /> and the quadrature-based.<ref name=":17" /><ref name=":2" />
* De la Cruz H. et al. (2010) introduce strong HOLL method for SDEs.
== References ==
Line 975 ⟶ 864:
[[Category:Numerical analysis]]
[[Category:Numerical integration
|