Local linearization method: Difference between revisions

Content deleted Content added
No edit summary
 
(17 intermediate revisions by 11 users not shown)
Line 1:
{{short description|Numerical method for differential equations}}
{{tone|date=February 2020}}<!-- The article reads a bit like a textbook. -->
In [[numerical analysis]], the '''local linearization (LL) method''' is a general strategy for designing [[Numerical integration|numerical integrators]] for differential equations based on a local (piecewise) linearization of the given equation on consecutive time intervals. The numerical integrators are then iteratively defined as the solution of the resulting piecewise linear equation at the end of each consecutive interval. The LL method has been developed for a variety of equations such as the [[Ordinary differential equation|ordinary]], [[Delay differential equation|delayed]], random and [[Stochastic differential equation|stochastic]] differential equations. The LL integrators are key component in the implementation of [[Estimation theory|inference methods]] for the estimation of unknown parameters and unobserved variables of differential equations given [[time series]] of (potentially noisy) observations. The LL schemes are ideals to deal with complex models in a variety of fields as [[neuroscience]], [[finance]], [[Forestry|forestry management]], [[control engineering]], [[mathematical statistics]], etc.
 
Line 49:
=== Local linear discretization ===
For a time discretization <math>\left( t\right) _{h}</math>, the ''Local Linear discretization'' of the ODE (4.1) at each point <math>t_{n+1}\in \left(
t\right) _{h}</math> is defined by the recursive expression <ref name=":8">Jimenez J.C. (2009). "Local Linearization methods for the numerical integration of ordinary differential equations: An overview". [https://inis.iaea.org/search/search.aspx?orig_q=RN:40101978 ICTP Technical Report]. 035: 357–373.</ref> <ref name=":18" />
 
<div style="text-align: center;">
Line 58:
The Local Linear discretization (4.3) [[Rate of convergence|converges]] with order '''''2''''' to the solution of nonlinear ODEs, but it match the solution of the linear ODEs. The recursion (4.3) is also known as Exponential Euler discretization.<ref name=":22" />
 
=== High-order local linear discretizations ===
 
For a time discretization <math>(t)_h,</math> a ''high-order local linear (HOLL)'' discretization of the ODE (4.1) at each point <math>t_{n+1} \in (t)_h</math> is defined by the recursive expression <ref name= ":8"/><ref name= ":3"/><ref name= ":2"/><ref name=":1" />
Line 85:
HOLL discretizations are, for instance, the followings:
* ''Locally Linearized Runge Kutta discretization''<ref name=":1">de la Cruz H.; Biscay R.J.; Carbonell F.; Jimenez J.C.; Ozaki T. (2006). "Local Linearization-Runge Kutta (LLRK) methods for solving ordinary differential equations". Lecture Note in Computer Sciences 3991: 132–139, Springer-Verlag. [[doi:10.1007/11758501_2211758501 22]]. {{ISBN|978-3-540-34379-0}}.</ref><ref name=":3">de la Cruz H.; Biscay R.J.; Jimenez J.C.; Carbonell F. (2013). "Local Linearization - Runge Kutta Methods: a class of A-stable explicit integrators for dynamical systems". Math. Comput. Modelling. 57 (3–4): 720–740. [[doi:10.1016/j.mcm.2012.08.011|doi:10.1016/j.mcm.2012.08.011.]].</ref>
<div style="text-align: left;">
<math>\qquad \mathbf{z}_{n+1}=\mathbf{z}_n+\mathbf{\phi }(t_n,\mathbf{z}_n;h_n)+h_n \sum_{j=1}^s b_j \mathbf{k}_j,\quad \text{ with } \quad \mathbf{k}_i = \mathbf{q}(t_n,\mathbf{z}_n;\text{ }t_n + c_i h_n \mathbf{,} \mathbf{} h_n \sum_{j=1}^{i-1} a_{ij}\mathbf{k}_j), </math>
Line 96:
</div>
 
which results from the approximation of <math>\mathbf{g}_{n}</math> in (4.2) by its order-''p'' truncated [[Taylor series|Taylor expansion]].
 
* ''Multistep-type exponential propagation discretization''
Line 110:
</div>
 
which results from the interpolation of <math>\mathbf{g}_{n}</math> in (4.2) by a polynomial of degree ''p'' on <math>t_{n},\ldots, t_{n-p+1}</math>, where <math>\nabla ^{j}\mathbf{g}_{n}(t_{m},\mathbf{z}_{m})</math> denotes the ''j''-th [[backward difference]] of <math>\mathbf{g}_{n}(t_{m},\mathbf{z}_{m})</math>.
 
* ''Runge Kutta type Exponential Propagation discretization'' <ref name=":17">Tokman M. (2006). "Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods". J. Comput. Physics. 213 (2): 748–776. [[doi:10.1016/j.jcp.2005.08.032|doi:10.1016/j.jcp.2005.08.032.]].</ref>
 
<div style="text-align: center;">
Line 123:
</div>
 
which results from the interpolation of <math>\mathbf{g}_{n}</math> in (4.2) by a polynomial of degree ''p'' on <math>t_{n},\ldots, t_{n}+(p-1)h/p</math>,
 
* ''Linealized exponential Adams discretization''<ref name=":7">M. Hochbruck.; A. Ostermann. (2011). "Exponential multistep methods of Adams-type". BIT Numer. Math. 51 (4): 889–908. [[doi:10.1007/s10543-011-0332-6|doi:10.1007/s10543-011-0332-6.]] .</ref>
 
<div style="text-align: center;">
Line 136:
</div>
 
which results from the interpolation of <math>\mathbf{g}_{n}</math> in (4.2) by a [[Hermite polynomials|Hermite polynomial]] of degree ''p'' on <math>t_{n},\ldots, t_{n-p+1}</math>.
 
=== Local linearization schemes ===
Line 145:
</div>
 
where '''A''' is a ''d''&nbsp;×&nbsp;''d'' matrix. Every numerical implementation <math>\mathbf{y}_n</math> of the LL (or of a HOLL) <math>\mathbf{z}_{n}</math> of any order is generically called ''Local Linearization scheme''.<ref name= ":8"/><ref name=":25"> Jimenez, J. C., & Carbonell, F. (2005). "Rate of convergence of local linearization schemes for initial-value problems". Appl. Math. Comput., 171(2), 1282-1295. [[doi:10.1016/j.amc.2005.01.118]].</ref>
 
==== Computing integrals involving matrix exponential ====
 
Among a number of algorithms to compute the integrals <math>\phi _{j}</math>, those based on rational Padé and Krylov subspaces approximations for exponential matrix are preferred. For this, a central role is playing by the expression<ref>Carbonell F.; Jimenez J.C.; Pedroso L.M. (2008). "Computing multiple integrals involving matrix exponentials". J. Comput. Appl. Math. 213: 300–305. [https://doi.org/10.1016%2Fj.cam.2007.01.007 doi:10.1016/j.cam.2007.01.007].</ref><ref name=":2">de la Cruz H.; Biscay R.J.; Carbonell F.; Ozaki T.; Jimenez J.C. (2007). "A higher order Local Linearization method for solving ordinary differential equations". Appl. Math. Comput. 185: 197–212. [[doi:10.1016/j.amc.2006.06.096|doi:10.1016/j.amc.2006.06.096.]].</ref><ref name=":13">Jimenez J.C.; Pedroso L.; Carbonell F.; Hernandez V. (2006). "Local linearization method for numerical integration of delay differential equations". SIAM J. Numer. Analysis. 44 (6): 2584–2609. [[doi:10.1137/040607356|doi:10.1137/040607356.]].</ref>
 
<div style="text-align: center;">
Line 174:
If <math>\mathbf{P}_{p,q}(2^{-k}\mathbf{H}h)
</math> denotes the (''p'';&nbsp;''q'')-[[Padé approximant|Padé approximation]] of <math>e^{2^{-k}\mathbf{H}h}
</math> and ''k'' is the smallest natural number such that <math>|2^{-k}\mathbf{H}h|\leq \frac{1}{2}, then</math> <ref name=":12">Jimenez J.C.; de la Cruz H. (2012). "Convergence rate of strong Local Linearization schemes for stochastic differential equations with additive noise". BIT Numer. Math. 52 (2): 357–382. [[doi:10.1007/s10543-011-0360-2|doi:10.1007/s10543-011-0360-2.]] .</ref><ref name=":25" />
<div style="text-align: center;">
<math>\left\vert \sum\nolimits_{i=1}^l \phi_i (\mathbf{A},h)\mathbf{a}_{i}-
Line 189:
where <math>m \leq d</math> is the dimension of the Krylov subspace.
 
==== Order-2 LL schemes ====
 
<div style="text-align: center;">
<math>\mathbf{y}_{n+1}=\mathbf{y}_{n}+\mathbf{L}(\mathbf{P}_{p,q}(2^{-k_{n}}
\mathbf{M}_{n}h_{n}))^{2^{k_{n}}}\mathbf{r,} </math> <ref name=":9">Jimenez J.C.; Biscay R.; Mora C.; Rodriguez L.M. (2002). "Dynamic properties of the Local Linearization method for initial-value problems". Appl. Math. Comput. 126: 63–68. [[doi:10.1016/S0096-3003(00)00100-4|doi:10.1016/S0096-3003(00)00100-4.]].</ref><ref name=":25"/> <math>\qquad \qquad (4.6)</math>
</div>
 
Line 221:
</div>
 
==== Order-3 LL-Taylor schemes ====
 
<div style="text-align: center;">
<math>\mathbf{y}_{n+1}=\mathbf{y}_n+\mathbf{L}_{1}(\mathbf{P}_{p,q}(2^{-k_n}
\mathbf{T}_n h_n))^{2^{k_n}}\mathbf{r}_1 \mathbf{,}</math> <ref name=":2" /> <math> \qquad \qquad (4.7)</math>
</div>
 
where for [[Autonomous system (mathematics)|autonomous]] ODEs the matrices <math>\mathbf{T}_{n}, \mathbf{L}_{1}</math> and <math>\mathbf{r}_{1}</math> are defined as
Line 262:
<div style="text-align: center;">
<math>\mathbf{y}_{n+1}=\mathbf{y}_{n}+\mathbf{u}_{4}+\frac{h_{n}}{6}(2\mathbf{k}
_{2}+2\mathbf{k}_{3}+\mathbf{k}_{4}),\quad</math> <ref name=":3" /> <ref name=":1" /> <math>\qquad \qquad (4.8)</math>
</div>
 
Line 293:
<div style="text-align: center;">
<math>\mathbf{y}_{n+1}=\mathbf{y}_n+\mathbf{u}_s+h_n\sum_{j=1}^s b_j \mathbf{k}_j \qquad \text{ and } \qquad \widehat{\mathbf{y}}_{n+1}=\mathbf{y}_n+\mathbf{u}_s+h_n\sum_{j=1}^s \widehat{b}_j \mathbf{k}_j,\quad </math>
<ref name=":15">Jimenez J.C.; Sotolongo A.; Sanchez-Bornot J.M. (2014). "Locally Linearized Runge Kutta method of Dormand and Prince". Appl. Math. Comput. 247: 589–606. [[doi:/10.1016/j.amc.2014.09.001|doi:10.1016/j.amc.2014.09.001.]] .</ref> <ref name=":16"> Naranjo-Noda, Jimenez J.C. (2021) "Locally Linearized Runge_Kutta method of Dormand and Prince for large systems of initial value problems." J.Comput. Physics. 426: 109946. [[doi:10.1016/j.jcp.2020.109946|doi:10.1016/j.jcp.2020.109946.]] .</ref>
<math>\qquad \qquad (4.9)</math>
</div>
Line 304:
</div>
 
with <math>\mathbf{k}_{1}\equiv \mathbf{0}</math>, and <math>a_{j,i}, b_{j}, \widehat{b}_j \quad and \quad c_j</math> are the [[Dormand–Prince method|Runge–Kutta coefficients of Dormand and Prince]] and ''p'' + ''q'' > 4. The vector <math>\mathbf{u}_j</math> in the above scheme is computed by a Padé or Krylor–Padé approximation for small or large systems of ODE, respectivellyrespectively.
 
==== Stability and dynamics ====
[[File:Figure ODE.jpg|thumb|488x488px|'''Fig. 1''' Phase portrait (dashed line) and approximate phase portrait (solid line) of the nonlinear ODE (4.10)-(4.11) computed by the order-2 LL scheme (4.2), the order-4 classical Rugen-Kutta scheme [[Runge–Kutta methods|''RK''4]], ''and the order-4 LLRK''4 schemes (4.8) with step size h=1/2 , and p=q=6.]] By construction, the LL and HOLL discretizations inherit the stability and dynamics of the linear ODEs, but it is not the case of the LL schemes in general. With <math>p\leq q\leq p+2</math>, the LL schemes (4.6)-(4.9) are [[Stiff equation|''A''-stable]].<ref name=":3" /> With ''q'' = ''p'' + 1 or ''q'' = ''p'' + 2, the LL schemes (4.6)–(4.9) are also [[L-stability|''L''-stable]].<ref name=":3" /> For linear ODEs, the LL schemes (4.6)-(4.9) converge with order ''p'' + ''q''.<ref name=":3" /><ref name=":25" /> In addition, with ''p = q = 6'' and <math>m_{n}</math> = ''d'', all the above described LL schemes yield to the ″exact computation″ (up to the precision of the [[floating-point arithmetic]]) of linear ODEs on the current personal computers.<ref name=":3" /><ref name=":25" /> This includes [[Stiff equation|stiff]] and highly oscillatory linear equations. Moreover, the LL schemes (4.6)-(4.9) are regular for linear ODEs and inherit the [[Symplectic geometry|symplectic structure]] of [[Hamiltonian mechanics|Hamiltonian]] [[harmonic oscillator]]s.<ref name=":2" /><ref name=":9" /> These LL schemes are also linearization preserving, and display a better reproduction of the [[Stable manifold|stable and unstable manifolds]] around [[hyperbolic equilibrium point]]s and [[Limit cycle|periodic orbits]] that [[Numerical methods for ordinary differential equations|other numerical schemes]] with the same stepsize.<ref name=":2" /><ref name=":9" /> For instance, Figure 1 shows the [[phase portrait]] of the ODEs
 
: <math>
Line 359:
</div>
 
and <math>\widetilde{\mathbf{z}}^i:\left[ t_n-\tau_i,t_n\right] \longrightarrow \mathbb{R}^d</math> is a suitable approximation to <math>\mathbf{x}(t)</math> for all <math>t\in \lbrack t_n-\tau_i,t_n]</math> such that <math>\widetilde{\mathbf{z}}^i(t_n)=\mathbf{z}_n.</math> Here,<div style="text-align: center;">
<math>\mathbf{A}_n=\mathbf{f}_x(t_n,\mathbf{z}_n,\widetilde{\mathbf{z}}_{t_n}^1(-\tau_1),\ldots,\widetilde{\mathbf{z}}_{t_n}^m(-\tau_d)),
\text{ }\mathbf{B}_n^i=\mathbf{f}_{x_t(-\tau_i)}(t_n,\mathbf{z}_n,\widetilde{\mathbf{z}}_{t_n}^1(-\tau_1),\ldots,\widetilde{\mathbf{z}}_{t_n}^m(-\tau_d)) </math>
Line 374:
 
are constant vectors. <math>\mathbf{f}_{t}, \mathbf{f}_{x} \quad and \quad \mathbf{f}
_{x_{t}(-\tau _{i})}</math> denote, respectively, the partial derivatives of '''f''' with respect to the variables ''t'' and '''''x,''''', and <math>\mathbf{x}_{t}(-\tau _{i})</math>. The Local Linear discretization (5.2) converges to the solution of (5.1) with order <math>\alpha =\min \{2,r\},</math> if <math>\widetilde{\mathbf{z}}_{t_{n}}^{i}</math> approximates <math>\mathbf{z}_{t_{n}}^{i}</math> with order <math>r \quad (i.e., \left\vert \mathbf{z}_{t_{n}}^{i}\mathbf{(}u-\tau _{i}
\mathbf{)}-\widetilde{\mathbf{z}}_{t_{n}}^{i}\mathbf{(}u-\tau _{i}\mathbf{)}
\right\vert \propto h_{n}^{r}</math> for all <math>u\in \lbrack 0,h_{n}])</math>.
 
=== Local Linearizationlinearization schemes ===
[[File:Figure DDE.png|thumb|450x450px|'''Fig. 2''' Approximate paths of the [https://doi.org/10.1016/S0022-5193(05)80142-0 Marchuk et al. (1991)] antiviral immune model described by a stiff system of ten-dimensional nonlinear DDEs with five time delays: top, [[doi:10.1016/S0168-9274(00)00055-6|continuous Runge-KuttaRunge–Kutta (2,3)]] scheme ; botombottom, LL scheme (5.3). Step-size ''h''&nbsp;=&nbsp;0.01'' fixed, and ''p''&nbsp;=&nbsp;''q=6''&nbsp;=&nbsp;6.]]
 
Depending ofon the approximations <math>\widetilde{\mathbf{z}}_{t_{n}}^{i}</math> and ofon the algorithm to compute <math>\mathbf{\phi }</math> different Local Linearizations schemes can be defined. Every numerical implementation <math>\mathbf{y}_{n}</math> of a Local Linear discretization <math>\mathbf{z}_{n}</math> is generically called ''Locallocal Linearizationlinearization scheme''.
 
==== Order-2 polynomial LL schemes ====
 
<div style="text-align: center;">
<math>\mathbf{y}_{n+1}=\mathbf{y}_{n}+\mathbf{L}(\mathbf{P}_{p,q}(2^{-k_{n}} \mathbf{M}_{n}h_{n}))^{2^{k_{n}}}\mathbf{r,} \quad</math><ref name=":13" /> <math> \qquad (5.3) </math>
\mathbf{M}_{n}h_{n}))^{2^{k_{n}}}\mathbf{r,} \quad</math><ref name=":13" /> <math> \qquad (5.3) </math>
 
</div>
Line 432 ⟶ 431:
</div>
 
with <math>p+q>1</math> and <math>m_{n}>2</math>. Fig. 2 IlustratesIllustrates the stability of the LL scheme (5.3) and of that of an explicit scheme of similar ordenorder in the intregationintegration of a stiff systemssystem of DDEs.
 
== LL methods for RDEs ==
Line 469 ⟶ 468:
[[File:FigureRDE1.png|thumb|377x377px|'''Fig. 3''' Phase portrait of trajectories of the ''Euler'' and ''LL'' schemes in the integration of the nonlinear RDE (6.2)–(6.3) with step size ''h''&nbsp;=&nbsp;1/32, and ''p''&nbsp;=&nbsp;''q''&nbsp;=&nbsp;6.]]
 
Depending ofon the approximations <math>\widetilde{\mathbf{\xi }}</math> to the process <math>\mathbf{\xi}</math> and of the algorithm to compute <math>\mathbf{\phi}</math>, different Local Linearizations schemes can be defined. Every numerical implementation <math>\mathbf{y}_n</math> of the local linear discretization <math>\mathbf{z}_n</math> is generically called ''local linearization scheme.''
 
==== LL schemes ====
Line 475 ⟶ 474:
<div style="text-align: center;">
 
<math>\mathbf{y}_{n+1}=\mathbf{y}_n+\mathbf{L}(\mathbf{P}_{p,q}(2^{-k_n} \mathbf{M}_n h_{n}))^{2^{k_n}}\mathbf{r,} \quad </math> <ref name=":24" /> <ref name=":10">Jimenez J.C.; Carbonell F. (2009). "Rate of convergence of local linearization schemes for random differential equations". BIT Numer. Math. 49 (2): 357–373. [[doi:10.1007/s10543-009-0225-0]]. </ref> </div>
where the matrices <math>\mathbf{M}_{n}, \quad \mathbf{L} \quad and \quad \mathbf{r}</math> are defined as
 
 
<math>\mathbf{M}_{n}=\left[
Line 489 ⟶ 487:
\end{array}
\right]</math>
 
 
<math>\mathbf{L}=\left[
Line 537 ⟶ 534:
 
=== Local linear discretization ===
For a time discretization <math>\left( t\right) _{h}</math> , the order-<math>\mathbb{\gamma }</math> (=1,1.5) ''Strong Local Linear discretization'' of the solution of the SDE (7.1) is defined by the recursive relation <ref name=":14"> Jimenez J.C, Shoji I., Ozaki T. (1999) "Simulación of stochastic differential equation through the local linearization method. A comparative study". J. Statist. Physics. 99: 587-602, [[doi:10.1023/A:1004504506041|doi:10.1023/A:1004504506041.]].</ref> <ref name=":20" />
 
<div style="text-align: center;">
Line 595 ⟶ 592:
</div>
 
A ''high-order local linear discretization'' of the SDE ''(7.1)'' at each point <math>t_{n+1}\in(t)_h </math> is then defined by the recursive expression <ref name=":4">de la Cruz H.; Biscay R.J.; Jimenez J.C.; Carbonell F.; Ozaki T. (2010). "High Order Local Linearization methods: an approach for constructing A-stable high order explicit schemes for stochastic differential equations with additive noise". BIT Numer. Math. 50 (3): 509–539. [[doi:10.1007/s10543-010-0272-6]]. </ref>
 
<div style="text-align: center;">
Line 705 ⟶ 702:
==== Stability and dynamics ====
 
By construction, the strong LL and HOLL discretizations inherit the stability and [[Random dynamical system|dynamics]] of the linear SDEs, but it is not the case of the strong LL schemes in general. LL schemes (7.2)-(7.5) with <math>p\leq q\leq p+2 </math> are ''A''-stable, including stiff and highly oscillatory linear equations.<ref name=":12" /> Moreover, for linear SDEs with [[Pullback attractor|random attractors]], these schemes also have a random attractor that [[Convergence in probability|converges in probability]] to the exact one as the stepsize decreases and preserve the [[ergodicity]] of these equations for any stepsize.<ref name=":4" /><ref name=":12" /> These schemes also reproduce essential dynamical properties of simple and coupled harmonic oscillators such as the linear growth of energy along the paths, the oscillatory behavior around 0, the symplectic structure of Hamiltonian oscillators, and the mean of the paths.<ref name=":4" /><ref name=":5">de la Cruz H.; Jimenez J.C.; Zubelli J.P. (2017). "Locally Linearized methods for the simulation of stochastic oscillators driven by random forces". BIT Numer. Math. 57: 123–151. [[doi:10.1007/s10543-016-0620-2]].</ref> For nonlinear SDEs with small noise (i.e., (7.1) with <math>\mathbf{g}_{i}(t)\approx 0 </math>), the paths of these SLL schemes are basically the nonrandom paths of the LL scheme (4.6) for ODEs plus a small disturbance related to the small noise. In this situation, the dynamical properties of that deterministic scheme, such as the linearization preserving and the preservation of the exact solution dynamics around hyperbolic equilibrium points and periodic orbits, become relevant for the paths of the SLL scheme.<ref name=":4" /> For instance, Fig 4 shows the evolution of domains in the phase plane and the energy of the stochastic oscillator
 
<math>\begin{array}{ll}
Line 777 ⟶ 774:
<math>\mathbf{y}_{n+1}=\mathbf{y}_{n}+\mathbf{B}_{14}+(\mathbf{B}_{12}\mathbf{B}
_{11}^{\intercal })^{1/2}\mathbf{\xi }_{n} </math>
<ref name=":11">Jimenez J.C.; Carbonell F. (2015). "Convergence rate of weak Local Linearization schemes for stochastic differential equations with additive noise". J. Comput. Appl. Math. 279: 106–122. [[doi:10.1016/j.cam.2014.10.021|doi:10.1016/j.cam.2014.10.021.]].</ref> <ref name=":0">Carbonell F.; Jimenez J.C.; Biscay R.J. (2006). "Weak local linear discretizations for stochastic differential equations: convergence and numerical schemes". J. Comput. Appl. Math. 197: 578–596. [[doi:10.1016/j.cam.2005.11.032|doi:10.1016/j.cam.2005.11.032.]] .</ref>
</div>
 
where, for SDEs with autonomous diffusion coefficients, <math>\mathbf{B}_{11}</math>, <math>\mathbf{B}_{12}</math> and <math>\mathbf{B}_{14}</math> are the submatrices defined by the [[Block matrix|partitioned matrix]] <math>\mathbf{B}=\mathbf{P}_{p,q}(2^{-k_{n}}\mathcal{M}_{n}h_{n}))^{2^{k_{n}}}</math>, with
Line 802 ⟶ 799:
<math>\mathbf{y}_{n+1}=\mathbf{y}_{n}+\mathbf{B}_{16}+(\mathbf{B}_{14}\mathbf{B}
_{11}^{\intercal })^{1/2}\mathbf{\xi }_{n}, </math>
<ref name=":11" /> <ref name=":0" />
</div>
 
Line 843 ⟶ 840:
 
==== Stability and dynamics====
[[File:Figure WSDE.png|thumb|429x429px|'''''Fig. 5''''' Approximate mean of the SDE (8.2) computed via Monte Carlo with ''100'' simulations of various schemes with ''h=1/16'' and ''p=q=6''.]] By construction, the weak LL discretizations inherit the stability and [[Random dynamical system|dynamics]] of the linear SDEs, but it is not the case of the weak LL schemes in general. WLL schemes, with <math>p\leq q\leq p+2,</math> preserve the [[Moment (mathematics)|first two moments]] of the linear SDEs, and inherits the mean-square stability or instability that such solution may have.<ref name=":11" /> This includes, for instance, the equations of coupled harmonic oscillators driven by random force, and large systems of stiff linear SDEs that result from the method of lines for linear stochastic partial differential equations. Moreover, these WLL schemes preserve the [[ergodicity]] of the linear equations, and are geometrically ergodic for some classes of nonlinear SDEs.<ref name=":6"> Hansen N.R. (2003) "Geometric ergodicity of discre-time approximations to multivariate diffusion". Bernoulli. 9 : 725-743, [[doi:10.3150/bj/1066223276]].</ref> For nonlinear SDEs with small noise (i.e., (8.1) with <math>\mathbf{g}_{i}(t)\approx 0</math>), the solutions of these WLL schemes are basically the nonrandom paths of the LL scheme (4.6) for ODEs plus a small disturbance related to the small noise. In this situation, the dynamical properties of that deterministic scheme, such as the linearization preserving and the preservation of the exact solution dynamics around hyperbolic equilibrium points and periodic orbits, become relevant for the mean of the WLL scheme.<ref name=":11" /> For instance, Fig. 5 shows the approximate mean of the SDE
 
<math>dx=-t^{2}x\text{ }dt+\frac{3}{2(t+1)}e^{-t^{3}/3}\text{ }dw_{t},\qquad \qquad x(0)=1, \qquad \quad(8.2)</math>
Line 852 ⟶ 849:
Below is a time line of the main developments of the Local Linearization (LL) method.
 
* Pope D.A. (1963) introduces the LL discretization for ODEs and the LL scheme based on Taylor expansion. <ref name=":18"> Pope, D. A. (1963). "An exponential method of numerical integration of ordinary differential equations". Comm. ACM, 6(8), 491-493. [[doi:10.1145/366707.367592]].</ref>
* Ozaki T. (1985) introduces the LL method for the integration and estimation of SDEs. The term "Local Linearization" is used for first time. <ref name=":19"> Ozaki, T. (1985). "Non-linear time series models and dynamical systems". Handbook of statistics, 5, 25-83. [[doi:10.1016/S0169-7161(85)05004-0|<small>doi:10.1016/S0169-7161(85)05004-0</small>]].</ref>
* Biscay R. et al. (1996) reformulate the strong LL method for SDEs.<ref name=":20"> Biscay, R., Jimenez, J. C., Riera, J. J., & Valdes, P. A. (1996). "Local linearization method for the numerical solution of stochastic differential equations". Annals Inst. Statis. Math. 48(4), 631-644. [[doi:10.1007/BF00052324|<small>doi:10.1007/BF00052324</small>]] .</ref>
* Shoji I. and Ozaki T. (1997) reformulate the weak LL method for SDEs.<ref name=":21"> Shoji, I., & Ozaki, T. (1997). "Comparative study of estimation methods for continuous time stochastic processes". J. Time Series Anal. 18(5), 485-506. [[doi:10.1111/1467-9892.00064|<small>doi: 10.1111/1467-9892.00064</small>]].</ref>
* Hochbruck M. et al. (1998) introduce the LL scheme for ODEs based on Krylov subspace approximation. <ref name=":22">Hochbruck, M., Lubich, C., & Selhofer, H. (1998). "Exponential integrators for large systems of differential equations". SIAM J. Scient. Comput. 19(5), 1552-1574. [[doi:10.1137/S1064827595295337|<small>doi:10.1137/S1064827595295337</small>]].</ref>
* Jimenez J.C. (2002) introduces the LL scheme for ODEs and SDEs based on rational Padé approximation. <ref name=":23">Jimenez, J. C. (2002). "A simple algebraic expression to evaluate the local linearization schemes for stochastic differential equations". Appl. Math. Letters, 15(6), 775-780. [[doi:10.1016/S0893-9659(02)00041-1|<small>doi:10.1016/S0893-9659(02)00041-1</small>]].</ref>
* Carbonell F.M. et al. (2005) introduce the LL method for RDEs. <ref name=":24">Carbonell, F., Jimenez, J. C., Biscay, R. J., & De La Cruz, H. (2005). "The local linearization method for numerical integration of random differential equations". BIT Num. Math. 45(1), 1-14. [[doi:10.1007/S10543-005-2645-9|doi:10.1007/s10543-005-2645-9]].</ref>
* Jimenez J.C. et al. (2006) introduce the LL method for DDEs. <ref name=":13" />
* De la Cruz H. et al. (2006, 2007) and Tokman M. (2006) introduce the two classes of HOLL integrators for ODEs: the integrator-based <ref name=":1" /> and the quadrature-based.<ref name=":17" /><ref name=":2" />
* De la Cruz H. et al. (2010) introduce strong HOLL method for SDEs. <ref name=":4" />
 
== References ==
Line 867 ⟶ 864:
 
[[Category:Numerical analysis]]
[[Category:Numerical integration (quadrature)]]