Karatsuba algorithm: Difference between revisions

Content deleted Content added
Basic step: clarification
integer specify in lead
 
(4 intermediate revisions by 3 users not shown)
Line 12:
}}
[[File:Karatsuba_multiplication.svg|thumb|300px|Karatsuba multiplication of az+b and cz+d (boxed), and 1234 and 567 with z=100. Magenta arrows denote multiplication, amber denotes addition, silver denotes subtraction and cyan denotes left shift. (A), (B) and (C) show recursion with z=10 to obtain intermediate values.]]
The '''Karatsuba algorithm''' is a fast [[multiplication algorithm]] for [[Integer|integers]]. It was discovered by [[Anatoly Karatsuba]] in 1960 and published in 1962.<ref name="kara1962">
{{cite journal
| author = A. Karatsuba and Yu. Ofman
Line 91:
: ''z''<sub>1</sub> = ('''12''' + '''345''') '''×''' ('''6''' + '''789''') − ''z''<sub>2</sub> − ''z''<sub>0</sub> = 357 '''×''' 795 − 72 − 272205 = 283815 − 72 − 272205 = 11538
 
We get the result by just adding these three partial results, shifted accordingly (and then taking carries into account by decomposing these three inputs in base ''1000'' likeas for the input operands):
: result = ''z''<sub>2</sub> · (''B''<sup>''m''</sup>)<sup>''2''</sup> + ''z''<sub>1</sub> · (''B''<sup>''m''</sup>)<sup>''1''</sup> + ''z''<sub>0</sub> · (''B''<sup>''m''</sup>)<sup>''0''</sup>, i.e.
: result = 72 · ''1000''<sup>2</sup> + 11538 · ''1000'' + 272205 = '''83810205'''.