Content deleted Content added
starting a list of "famous" anytime algorithms |
Altered title. Added journal. | Use this tool. Report bugs. | #UCB_Gadget |
||
(4 intermediate revisions by 4 users not shown) | |||
Line 8:
== Goals ==
The goal of anytime algorithms are to give [[Hybrid intelligent system|intelligent systems]] the ability to make results of better quality in return for turn-around time.<ref name="Zilberstein">{{harvnb|Zilberstein|1996}}
What makes anytime algorithms unique is their ability to return many possible outcomes for any given input.<ref name="Zilberstein"/> An anytime algorithm uses many well defined quality measures to monitor progress in [[problem solving]] and [[distributed computing]] resources.<ref name="Zilberstein"/> It keeps searching for the best possible answer with the amount of time that it is given.<ref name="umich">{{cite web|title=Anytime algorithms|url=http://ai.eecs.umich.edu/cogarch2/index.html|website=Cognitive architectures|publisher=University of Michigan Artificial Intelligence Laboratory|archiveurl=https://web.archive.org/web/20131213011435/http://ai.eecs.umich.edu/cogarch2/cap/anytime.plan|archivedate=13 December 2013}}</ref> It may not run until completion and may improve the answer if it is allowed to run longer.<ref name="elook">{{cite web|title=Anytime algorithm - Computing Reference|url=http://www.elook.org/computing/anytime-algorithm.htm|website=eLook.org|archiveurl=https://web.archive.org/web/20131212094200/http://www.elook.org/computing/anytime-algorithm.htm|archivedate=12 December 2013}}</ref>
Line 31:
*Growth rate: Amount of increase with each step. Does it change constantly, such as in a [[bubble sort]] or does it change unpredictably?
*End condition: The amount of runtime needed<ref name="Teije"/>
==References==
Line 43 ⟶ 38:
{{refbegin}}
*{{cite conference |last1=Boddy |first1=M. |last2=Dean |first2=T. |title=Solving time-dependent planning problems |book-title=Proceedings of the 11th international joint conference on Artificial intelligence |volume=2 |date=1989 |isbn= |pages=979–984 |url=https://dl.acm.org/doi/abs/10.5555/1623891.1623912 |id=Brown University CS-89-03}}
* {{cite journal |last1=Grass |first1=J. |last2=Zilberstein |first2=S. |title=Anytime Algorithm Development Tools |journal=ACM SIGART Bulletin |volume=7 |issue=2 Special Issue on Anytime Algorithms and Deliberation Scheduling |pages= 20–27|date=1996 |doi=10.1145/242587.242592 |s2cid=7670055 |url=https://dl.acm.org/doi/abs/10.1145/242587.242592|url-access=subscription }}
* {{cite conference |arxiv=1301.7384 |last1=Horsch |first1=M.C. |last2=Poole |first2=D. |title=An anytime algorithm for decision making under uncertainty |book-title=Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence |date=1998 |isbn=978-1-55860-555-8 |pages=246–255 |url=http://www.cs.ubc.ca/spider/poole/papers/randaccref.pdf}}
* {{cite tech report |first=E.J. |last=Horvitz |title=Reasoning about inference tradeoffs in a world of bounded resources |publisher=Medical Computer Science Group, Section on Medical Informatics, Stanford University |id=KSL-86-55 |date=March 1986 |url=}}
|