Content deleted Content added
→Limits of the arithmetic–geometric mean: Removed redundancy Tags: Mobile edit Mobile web edit |
No edit summary |
||
(7 intermediate revisions by 4 users not shown) | |||
Line 7:
== Algorithm ==
# Initial value setting: <math display="block">a_0 = 1\qquad b_0 = \frac{1}{\sqrt{2}}\qquad p_0 = 1\qquad t_0 = \frac{1}{4}
# Repeat the following instructions until the difference
a_{n+1} & = \frac{a_n + b_n}{2}, \\
\\
\\
\\
t_{n+1} & = t_n - p_n(a_{n+1}-a_{n})^2. \\
\end{align}
</math>
Line 26 ⟶ 25:
:<math>3.14159264\dots</math>
:<math>3.1415926535897932382\dots</math>
:<math>3.14159265358979323846264338327950288419711\dots</math>
:<math>3.141592653589793238462643383279502884197169399375105820974944592307816406286208998625\dots</math>
The algorithm has [[quadratic convergence]], which essentially means that the number of correct digits doubles with each [[iteration]] of the algorithm.
Line 107:
=== Legendre’s identity ===
Legendre proved the following identity:
:<math display="block">K(\cos \theta) E(\sin \theta ) + K(\sin \theta ) E(\cos \theta) - K(\cos \theta) K(\sin \theta) = {\pi \over 2},
for all === Elementary proof with integral calculus ===
The Gauss-Legendre algorithm can be proven to give results converging to
== See also ==
|