Content deleted Content added
Citation bot (talk | contribs) m Alter: doi. Add: arxiv, chapter, pages, issue. Removed parameters. Formatted dashes. | You can use this bot yourself. Report bugs here. | User-activated. |
LucasBrown (talk | contribs) Changing short description from "An algorithm for inverting a matrix" to "Algorithm for inverting a matrix" |
||
(20 intermediate revisions by 12 users not shown) | |||
Line 1:
{{Short description|Algorithm for inverting a matrix}}
{{Technical|date=August 2021}}
[[File:
▲[[File:Extended_Sparse_Matrix.png|thumb|Extended Sparse Matrix arising from a <math>10 \times 10</math> semi-separable matrix whose semi-separable rank is <math>4</math>.]]
▲ |last1 = Rybicki|first1 = George B.|last2 = Press|first2 = William H.|arxiv = comp-gas/9405004|doi = 10.1103/PhysRevLett.74.1060|journal = Physical Review Letters|title = Class of fast methods for processing Irregularly sampled or otherwise inhomogeneous one-dimensional data|volume = 74|issue = 7|pages = 1060–1063|year = 1995|bibcode = 1995PhRvL..74.1060R|pmid=10058924}} {{Open access}}</ref> It is a computational optimization of a general set of statistical methods developed to determine whether two noisy, irregularly sampled data sets are, in fact, dimensionally shifted representations of the same underlying function.<ref>{{Cite journal|url = |title = Interpolation, realization, and reconstruction of noisy, irregularly sampled data|last = Rybicki|first = George B.|date = October 1992|journal = The Astrophysical Journal|doi = 10.1086/171845|pmid = |last2 = Press|first2 = William H.|bibcode = 1992ApJ...398..169R|volume=398|page=169}}{{Open access}}</ref><ref name=":0">{{Cite journal|last=MacLeod|first=C. L.|last2=Brooks|first2=K.|last3=Ivezic|first3=Z.|last4=Kochanek|first4=C. S.|last5=Gibson|first5=R.|last6=Meisner|first6=A.|last7=Kozlowski|first7=S.|last8=Sesar|first8=B.|last9=Becker|first9=A. C.|date=2011-02-10|title=Quasar Selection Based on Photometric Variability|journal=The Astrophysical Journal|volume=728|issue=1|pages=26|doi=10.1088/0004-637X/728/1/26|issn=0004-637X|arxiv=1009.2081|bibcode=2011ApJ...728...26M}}</ref> The most common use of the algorithm is in the detection of periodicity in astronomical observations.<ref name=":0" />
The fact that matrix <math>A</math> is a semi-separable matrix also forms the basis for {{proper name|celerite}}<ref>{{Cite web|url=https://celerite.readthedocs.io/en/stable/|title=celerite — celerite 0.3.0 documentation|website=celerite.readthedocs.io|language=en|access-date=2018-04-05}}</ref> library, which is a library for fast and scalable [[Gaussian
==See also==
* [[Invertible matrix]]
* [[Matrix decomposition]]
* [[Multidimensional signal processing]]
* [[System of linear equations]]
==References==
{{Reflist}}
== External links ==
[[Category:Numerical linear algebra]]▼
* [https://github.com/sivaramambikasaran/ESS Implementation of the Generalized Rybicki Press algorithm]
* [https://github.com/dfm/celerite celerite library on GitHub]
▲[[Category:Numerical linear algebra]]
|