Content deleted Content added
m →Further improvements: Missing star in the first big-O. |
m Bot: http → https |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 32:
====Other notations====
In some countries such as [[Germany]], the above multiplication is depicted similarly but with the original product kept horizontal and computation starting with the first digit of the multiplier:<ref>{{Cite web |title=Multiplication |url=
23958233 · 5830
Line 259:
====History of quarter square multiplication====
In prehistoric time, quarter square multiplication involved [[Floor and ceiling functions|floor function]]; that some sources<ref>{{citation |title= Quarter Tables Revisited: Earlier Tables, Division of Labor in Table Construction, and Later Implementations in Analog Computers |last=McFarland |first=David|url=
Antoine Voisin published a table of quarter squares from 1 to 1000 in 1817 as an aid in multiplication. A larger table of quarter squares from 1 to 100000 was published by Samuel Laundy in 1856,<ref>{{Citation |title=Reviews |journal=The Civil Engineer and Architect's Journal |year=1857 |pages=54–55 |url=https://books.google.com/books?id=gcNAAAAAcAAJ&pg=PA54 |postscript=.}}</ref> and a table from 1 to 200000 by Joseph Blater in 1888.<ref>{{Citation|title=Multiplying with quarter squares |first=Neville |last=Holmes| journal=The Mathematical Gazette |volume=87 |issue=509 |year=2003 |pages=296–299 |jstor=3621048|postscript=.|doi=10.1017/S0025557200172778 |s2cid=125040256 }}</ref>
Line 400:
==== History ====
The algorithm was invented by [[Volker Strassen|Strassen]] (1968). It was made practical and theoretical guarantees were provided in 1971 by [[Arnold Schönhage|Schönhage]] and Strassen resulting in the [[Schönhage–Strassen algorithm]].<ref name="schönhage">{{cite journal |first1=A. |last1=Schönhage |first2=V. |last2=Strassen |title=Schnelle Multiplikation großer Zahlen |journal=Computing |volume=7 |issue= 3–4|pages=281–292 |date=1971 |doi=10.1007/BF02242355 |s2cid=9738629 |url=https://link.springer.com/article/10.1007/BF02242355|url-access=subscription }}</ref>
=== Further improvements ===
Line 422:
===Lower bounds===
There is a trivial lower bound of [[Big O notation#Family of Bachmann–Landau notations|Ω]](''n'') for multiplying two ''n''-bit numbers on a single processor; no matching algorithm (on conventional machines, that is on Turing equivalent machines) nor any sharper lower bound is known. The [[Hartmanis–Stearns conjecture]] would imply that <math>O(n)</math> cannot be achieved. Multiplication lies outside of [[ACC0|AC<sup>0</sup>[''p'']]] for any prime ''p'', meaning there is no family of constant-depth, polynomial (or even subexponential) size circuits using AND, OR, NOT, and MOD<sub>''p''</sub> gates that can compute a product. This follows from a constant-depth reduction of MOD<sub>''q''</sub> to multiplication.<ref>{{cite book |first1=Sanjeev |last1=Arora |first2=Boaz |last2=Barak |title=Computational Complexity: A Modern Approach |publisher=Cambridge University Press |date=2009 |isbn=978-0-521-42426-4 |url={{GBurl|8Wjqvsoo48MC|pg=PR7}}}}</ref> Lower bounds for multiplication are also known for some classes of [[branching program]]s.<ref>{{cite journal |first1=F. |last1=Ablayev |first2=M. |last2=Karpinski |title=A lower bound for integer multiplication on randomized ordered read-once branching programs |journal=Information and Computation |volume=186 |issue=1 |pages=78–89 |date=2003 |doi=10.1016/S0890-5401(03)00118-4 |url=https://core.ac.uk/download/pdf/82445954.pdf}}</ref>
==Complex number multiplication==
Line 516:
===Basic arithmetic===
* [
* [
* [
===Advanced algorithms===
* [
{{Number-theoretic algorithms}}
|