Content deleted Content added
Added proper inline display where needed. |
No edit summary |
||
(35 intermediate revisions by 22 users not shown) | |||
Line 1:
{{Short description|Quickly converging computation of π}}
The '''Gauss–Legendre algorithm''' is an [[algorithm]] to compute the digits of [[Pi|{{pi}}]]. It is notable for being rapidly convergent, with only 25 iterations producing 45 million correct digits of {{pi}}. However,
The method is based on the individual work of [[Carl Friedrich Gauss]] (1777–1855) and [[Adrien-Marie Legendre]] (1752–1833) combined with modern algorithms for multiplication and [[square root]]s. It repeatedly replaces two numbers by their [[arithmetic mean|arithmetic]] and [[geometric mean]], in order to approximate their [[arithmetic-geometric mean]].
Line 6 ⟶ 7:
== Algorithm ==
# Initial value setting: <math display="block">a_0 = 1\qquad b_0 = \frac{1}{\sqrt{2}}\qquad p_0 = 1\qquad t_0 = \frac{1}{4}
▲:<math>a_0 = 1\qquad b_0 = \frac{1}{\sqrt{2}}\qquad t_0 = \frac{1}{4}\qquad p_0 = 1.\!</math>
▲2. Repeat the following instructions until the difference of <math>a_n\!</math> and <math>b_n\!</math> is within the desired accuracy:
\\
▲:<math> \begin{align} a_{n+1} & = \frac{a_n + b_n}{2}, \\
\\
t_{n+1} & = t_n - p_n(a_{n+1}-a_{n})^2. \\
\end{align}
</math>
The first three iterations give (approximations given up to and including the first incorrect digit):
:<math>3.140\dots
:<math>3.14159264\dots
:<math>3.1415926535897932382\dots
:<math>3.14159265358979323846264338327950288419711\dots</math>
:<math>3.141592653589793238462643383279502884197169399375105820974944592307816406286208998625\dots</math>
The algorithm has [[quadratic convergence]], which essentially means that the number of correct digits doubles with each [[iteration]] of the algorithm.
Line 38 ⟶ 41:
which both converge to the same limit.<br />
If <math>a_0=1
:<math>K(k) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}}.
If <math>c_0 = \sin\varphi
:<math>\sum_{i=0}^\infty 2^{i-1} c_i^2 = 1 - {E(\sin\varphi)\over K(\sin\varphi)}
where <math>E(k)
:<math>E(k) = \int_0^{\pi/2}\sqrt {1-k^2 \sin^2\theta}\
Gauss knew of
| last=Brent
| first=Richard
| author-link=Richard Brent (scientist)
| publication-date=
| year=1975
| title=Multiple-precision zero-finding methods and the complexity of elementary function evaluation
Line 73 ⟶ 75:
| oclc=
| accessdate=8 September 2007
| archive-date=23 July 2008
}}</ref>▼
| archive-url=https://web.archive.org/web/20080723170157/http://wwwmaths.anu.edu.au/~brent/pub/pub028.html
| url-status=dead
▲ }}</ref>
<ref name="salamin1">[[Eugene Salamin (mathematician)|Salamin, Eugene]], ''Computation of pi'', Charles Stark Draper Laboratory ISS memo 74–19, 30 January 1974, Cambridge, Massachusetts</ref>
<ref name="salamin2">{{Citation
Line 95 ⟶ 100:
| issn=0025-5718
| doi=10.2307/2005327
| jstor=2005327
| oclc=
| accessdate=
Line 100 ⟶ 106:
=== Legendre’s identity ===
Legendre proved the following identity:
:<math display="block">K(\
for all <math>\ === Elementary proof with integral calculus ===
The Gauss-Legendre algorithm can be proven to give results converging to <math>\pi</math> using only integral calculus. This is done here<ref>{{citation|title=Recent Calculations of π: The Gauss-Salamin Algorithm|last1=Lord|first1=Nick|doi=10.2307/3619132|year=1992|journal=The Mathematical Gazette|volume=76|issue=476|pages=231–242|jstor=3619132|s2cid=125865215 }}</ref> and here.<ref>{{citation|title=Easy Proof of Three Recursive π-Algorithms|last1=Milla|first1=Lorenz|arxiv=1907.04110|year=2019}}</ref>
== See also ==
Line 113 ⟶ 120:
{{reflist}}
{{DEFAULTSORT:Gauss-Legendre algorithm}}
[[Category:Pi algorithms]]
|