Content deleted Content added
Line 32:
Shore's density theorem: Let ''A'', ''C'' be α-regular recursively enumerable sets such that <math>\scriptstyle A <_\alpha C</math> then there exists a regular α-recursively enumerable set ''B'' such that <math>\scriptstyle A <_\alpha B <_\alpha C</math>.
Barwise has proved that the sets <math>\Sigma_1</math>-definable on <math>L_{\alpha^+}</math> are exactly the sets <math>\Pi_1^1</math>-definable on <math>L_\alpha</math>, where <math>\alpha^+</math> denotes the next admissible ordinal above <math>\alpha</math>, and <math>\Sigma</math> is from the [[Levy hierarchy]].<
==Relationship to analysis==
|