Actor-critic algorithm: Difference between revisions

Content deleted Content added
BattyBot (talk | contribs)
Fixed reference date error(s) (see CS1 errors: dates for details) and AWB general fixes
Citation bot (talk | contribs)
Altered url. URLs might have been anonymized. Add: authors 1-1. Removed URL that duplicated identifier. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Abductive | Category:Reinforcement learning | #UCB_Category 14/14
Line 39:
* <math display="inline">\gamma^j \left(R_j + \gamma V^{\pi_\theta}( S_{j+1}) - V^{\pi_\theta}( S_{j})\right)</math>: [[Temporal difference learning|TD(1) learning]].
* <math display="inline">\gamma^j Q^{\pi_\theta}(S_j, A_j)</math>.
* <math display="inline">\gamma^j A^{\pi_\theta}(S_j, A_j)</math>: '''Advantage Actor-Critic (A2C)'''.<ref name=":0">{{Citation |last1=Mnih |first1=Volodymyr |title=Asynchronous Methods for Deep Reinforcement Learning |date=2016-06-16 |url=https://arxiv.org/abs/1602.01783 |arxiv=1602.01783 |last2=Badia |first2=Adrià Puigdomènech |last3=Mirza |first3=Mehdi |last4=Graves |first4=Alex |last5=Lillicrap |first5=Timothy P. |last6=Harley |first6=Tim |last7=Silver |first7=David |last8=Kavukcuoglu |first8=Koray}}</ref>
* <math display="inline">\gamma^j \left(R_j + \gamma R_{j+1} + \gamma^2 V^{\pi_\theta}( S_{j+2}) - V^{\pi_\theta}( S_{j})\right)</math>: TD(2) learning.
* <math display="inline">\gamma^j \left(\sum_{k=0}^{n-1} \gamma^k R_{j+k} + \gamma^n V^{\pi_\theta}( S_{j+n}) - V^{\pi_\theta}( S_{j})\right)</math>: TD(n) learning.
* <math display="inline">\gamma^j \sum_{n=1}^\infty \frac{\lambda^{n-1}}{1-\lambda}\cdot \left(\sum_{k=0}^{n-1} \gamma^k R_{j+k} + \gamma^n V^{\pi_\theta}( S_{j+n}) - V^{\pi_\theta}( S_{j})\right)</math>: TD(λ) learning, also known as '''GAE (generalized advantage estimate)'''.<ref name="arxiv.org">{{Citation |last1=Schulman |first1=John |title=High-Dimensional Continuous Control Using Generalized Advantage Estimation |date=2018-10-20 |url=https://arxiv.org/abs/1506.02438 |arxiv=1506.02438 |last2=Moritz |first2=Philipp |last3=Levine |first3=Sergey |last4=Jordan |first4=Michael |last5=Abbeel |first5=Pieter}}</ref> This is obtained by an exponentially decaying sum of the TD(n) learning terms.
 
=== Critic ===
Line 66:
 
* '''Asynchronous Advantage Actor-Critic (A3C)''': [[Parallel computing|Parallel and asynchronous]] version of A2C.<ref name=":0" />
* '''Soft Actor-Critic (SAC)''': Incorporates entropy maximization for improved exploration.<ref>{{Citation |last1=Haarnoja |first1=Tuomas |title=Soft Actor-Critic Algorithms and Applications |date=2019-01-29 |url=https://arxiv.org/abs/1812.05905 |arxiv=1812.05905 |last2=Zhou |first2=Aurick |last3=Hartikainen |first3=Kristian |last4=Tucker |first4=George |last5=Ha |first5=Sehoon |last6=Tan |first6=Jie |last7=Kumar |first7=Vikash |last8=Zhu |first8=Henry |last9=Gupta |first9=Abhishek}}</ref>
* '''Deep Deterministic Policy Gradient (DDPG)''': Specialized for continuous action spaces.<ref>{{Citation |last1=Lillicrap |first1=Timothy P. |title=Continuous control with deep reinforcement learning |date=2019-07-05 |url=https://arxiv.org/abs/1509.02971 |arxiv=1509.02971 |last2=Hunt |first2=Jonathan J. |last3=Pritzel |first3=Alexander |last4=Heess |first4=Nicolas |last5=Erez |first5=Tom |last6=Tassa |first6=Yuval |last7=Silver |first7=David |last8=Wierstra |first8=Daan}}</ref>
 
== See also ==
Line 80:
* {{Cite book |last=Bertsekas |first=Dimitri P. |title=Reinforcement learning and optimal control |date=2019 |publisher=Athena Scientific |isbn=978-1-886529-39-7 |edition=2 |___location=Belmont, Massachusetts}}
* {{Cite book |last=Grossi |first=Csaba |title=Algorithms for Reinforcement Learning |date=2010 |publisher=Springer International Publishing |isbn=978-3-031-00423-0 |edition=1 |series=Synthesis Lectures on Artificial Intelligence and Machine Learning |___location=Cham}}
* {{Cite journal |lastlast1=Grondman |firstfirst1=Ivo |last2=Busoniu |first2=Lucian |last3=Lopes |first3=Gabriel A. D. |last4=Babuska |first4=Robert |date=November 2012 |title=A Survey of Actor-Critic Reinforcement Learning: Standard and Natural Policy Gradients |url=httphttps://ieeexplore.ieee.org/document/6392457/ |journal=IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) |volume=42 |issue=6 |pages=1291–1307 |doi=10.1109/TSMCC.2012.2218595 |issn=1094-6977}}
 
[[Category:Reinforcement learning]]