Content deleted Content added
Minor- |
m Fix links to disambiguation page Section |
||
Line 1:
{{Multiple issues
| confusing=December 2006
| rewrite=February 2009
}}
{{Expert-subject|Mathematics|date=November 2008}}
In a constrained Hamiltonian system, a dynamical quantity is called a '''first class constraint''' if its Poisson bracket with all the other constraints vanishes on the '''constraint surface''' (the surface implicitly defined by the simultaneous vanishing of all the constraints).
Line 74 ⟶ 75:
For most "practical" applications of first-class constraints, we do not see such complications: the [[quotient space]] of the restricted subspace by the f-flows (in other words, the orbit space) is well behaved enough to act as a [[differentiable manifold]], which can be turned into a [[symplectic manifold]] by projecting the [[symplectic form]] of M onto it (this can be shown to be [[well defined]]). In light of the observation about physical observables mentioned earlier, we can work with this more "physical" smaller symplectic manifold, but with 2n fewer dimensions.
In general, the quotient space is a bit "nasty" to work with when doing concrete calculations (not to mention nonlocal when working with [[diffeomorphism constraint]]s), so what is usually done instead is something similar. Note that the restricted submanifold is a [[bundle]] (but not a [[fiber bundle]] in general) over the quotient manifold. So, instead of working with the quotient manifold, we can work with a [[Section (category theory)|section]] of the bundle instead. This is called [[gauge fixing]].
The ''major'' problem is this bundle might not have a [[global section]] in general. This is where the "problem" of [[global anomaly|global anomalies]] comes in, for example. See [[Gribov ambiguity]]. This is a flaw in quantizing [[gauge theory|gauge theories]] many physicists overlooked.
|