Levenberg–Marquardt algorithm: Difference between revisions

Content deleted Content added
No edit summary
 
m fmt, cat
Line 1:
In [[mathematics]] and [[statistics]], ainimising a sum
Minimising a sum<br>
 
:<math>S(\vec{x}) = \sum_{i=1}^{m}[f_{i}(\vec{x})]^2</math>,<br>
where <math>f_{i}(\vec{x})</math> represent the components of function <math>\vec{f}</math>, may be solved by the Levenberg-Marquardt algorithm according to<br>
 
<math>(J^{T}J + \lambda I)\vec{q} = -J^{T}\vec{f}</math>.<br>
where
<math>J</math> represents the Jacobian of the function <math>\vec{f}</math>, <math>\lambda</math> the damping factor, which is altered at every iteration, <math>I</math> the identity, <math>\vec{q}</math> the solution to an iteration step.
 
:<math>f_{i}(\vec{x})</math>
 
represent the components of the function
 
:<math>\vec{f}</math>,
 
may be solved by the '''Levenberg-Marquardt algorithm''' according to
 
:<math>(J^{T}J + \lambda I)\vec{q} = -J^{T}\vec{f}</math>.<br>
 
Here <math>J</math> represents the [[Jacobian]] of the function <math>\vec{f}</math>, <math>\lambda</math> the damping factor, which is altered at every iteration, <math>I</math> the [[identity matrix]], and <math>\vec{q}</math> the solution to an [[iteration]] step.
 
[[Category:Algorithms]]