Content deleted Content added
Line 313:
:<math>A(z) = \sum_{k = 0}^{\infty} \frac{B(z)^k}{k} = \ln\left(\frac{1}{1-B(z)}\right).</math>
===Boxed produuct===
In labelled structures, the min-boxed product <math>\mathcal{A}_{min} = \mathcal{B}^{\square}\star \mathcal{C}</math> is dfined as the product construction with one more requirement that the element with smallest label is in <math>\mathcal{B}</math>. Similar, we can defined a max-boxed product and denoted by <math>\mathcal{A}_{max} = \mathcal{B}^{\blacksquare}\star \mathcal{C}</math>, where the element with largest label is in <math>\mathcal{B}</math>. We have,
:<math>A_{min}(Z)=A_{max}(Z)=\int^{z}_{0}B'(t)C(t)dt.</math>
or says,
:<math>\frac{dA_{min}(Z)}{z}=\frac{A_{max}(Z)}{z}=\frac{dB(t)}{z}C(t).</math>
===Other elementary constructions===
|