Content deleted Content added
Lilianmm87 (talk | contribs) agregar nuevas fórmulas |
Lilianmm87 (talk | contribs) |
||
Line 156:
<math>\phi _{j}(\mathbf{A},h)=\int\limits_{0}^{h}e^{(h-s)\mathbf{A}}s^{j-1}ds,\qquad j=1,2..., </math>
where A is an ''d <math>\times</math>
==== Computing integrals involving matrix exponential ====
Line 177:
\in \mathbb{R}^{(d+lr)\times (d+lr)},
</math>
\mathbf{L}=[\mathbf{I}$ $\mathbf{0}_{d\times l)}]$, $\mathbf{r}=[\mathbf{0}%▼
_{1\times (d+l-1)}$ $1]^{\intercal }$, and $\mathbf{v}_{i}=\mathbf{a}%▼
_{i}(i-1)!
</math>
If <math>\mathbf{P}_{p,q}(2^{-k}\mathbf{H}h)
</math> denotes the (p; q)-[[Padé approximant|Padé approximation]] of <math>e^{2^{-k}\mathbf{H}h}
</math> and ''k'' is the smallest integer number such that <math>\left\Vert 2^{-k}\mathbf{H}h\right\Vert \leq \frac{1}{2},
</math>
|