Logarithmic integral function: Difference between revisions

Content deleted Content added
Tags: Mobile edit Mobile web edit
m adjust format
Line 3:
==Integral representation==
The logarithmic integral has an integral representation defined for all positive [[real number]]s {{mvar|x}} ≠ 1 by the [[integral|definite integral]]
:<math> {\rm operatorname{li} (x) = \int_0^x \frac{dt}{\ln t}~. </math>
 
Here, {{math|ln}} denotes the [[natural logarithm]]. The function {{math|1/ln(''t'')}} has a [[mathematical singularity|singularity]] at {{mvar|t}}&nbsp;=&nbsp;1, and the integral for {{mvar|x}}&nbsp;>&nbsp;1 has to be interpreted as a ''[[Cauchy principal value]]'',
:<math> {\rm operatorname{li} (x) = \lim_{\varepsilon \to 0+} \left( \int_0^{1-\varepsilon} \frac{dt}{\ln t} + \int_{1+\varepsilon}^x \frac{dt}{\ln t} \right)~.</math>
 
==Offset logarithmic integral==
The '''offset logarithmic integral''' or '''Eulerian logarithmic integral''' is defined as
 
:<math> \operatorname{\rm Li}(x) = \operatorname{\rm li}(x) - \operatorname{\rm li}(2) \, </math>
 
or, integrally represented
 
:<math> {\rm operatorname{Li} (x) = \int_2^x \frac{dt}{\ln t} \, </math>
 
As such, the integral representation has the advantage of avoiding the singularity in the ___domain of integration.
Line 33:
which is valid for ''x''&nbsp;>&nbsp;0. This identity provides a series representation of li(''x'') as
 
:<math> {\rm operatorname{li} (e^u) = \hbox{Ei}(u) =
\gamma + \ln |u| + \sum_{n=1}^\infty {u^{n}\over n \cdot n!}
\quad \text{ for } u \ne 0 \; , </math>
Line 40:
 
:<math>
{\rm operatorname{li} (x) =
\gamma
+ \ln \ln x
Line 54:
The asymptotic behavior for ''x''&nbsp;→&nbsp;∞ is
 
:<math> {\rm operatorname{li} (x) = O \left( {x\over \ln x} \right) \; . </math>
 
where <math>O</math> is the [[big O notation]]. The full [[asymptotic expansion]] is
 
:<math> {\rm operatorname{li} (x) \sim \frac{x}{\ln x} \sum_{k=0}^\infty \frac{k!}{(\ln x)^k} </math>
 
or
 
:<math> \frac{{\rm operatorname{li} (x)}{x/\ln x} \sim 1 + \frac{1}{\ln x} + \frac{2}{(\ln x)^2} + \frac{6}{(\ln x)^3} + \cdots. </math>
 
This gives the following more accurate asymptotic behaviour:
 
:<math> {\rm operatorname{li} (x) - {x\over \ln x} = O \left( {x\over \ln^2 x} \right) \; . </math>