Content deleted Content added
Removed the deprecated use of \! |
|||
Line 48:
where <math>E(k)</math> is the [[Elliptic integral#Complete elliptic integral of the second kind|complete elliptic integral of the second kind]]:
:<math>E(k) = \int_0^{\pi/2}\sqrt {1-k^2 \sin^2\theta}\
Gauss knew of both of these results.<ref name="brent">{{Citation
Line 98:
| accessdate=
}}</ref>
=== Legendre’s identity ===
For <math>\varphi</math> and <math>\theta</math> such that <math display="inline">\varphi+\theta={1 \over 2}\pi</math> Legendre proved the identity:
:<math>K(\sin \varphi) E(\sin \theta ) + K(\sin \theta ) E(\sin \varphi) - K(\sin \varphi) K(\sin \theta) = {1 \over 2}\pi.</math><ref name="brent" />
:Equivalently,
:<math>\forall \varphi: K(\sin\varphi)[E(\cos\varphi)-K(\cos\varphi)] + K(\cos\varphi)E(\sin\varphi) = \frac{\pi}{2}</math>
=== Gauss–Euler method ===
|