Content deleted Content added
m MOS:HEAD Spelling/grammar/punctuation/typographical correction |
→Other types of quantum computational queries: Grover's algorithm is definitely optimal |
||
Line 121:
==== Grover's algorithm ====
An example depicting the power of quantum computing is [[Grover's algorithm]] for searching unstructured databases. The algorithm's quantum query complexity is <math display="inline">O{\left(\sqrt{N}\right)}</math>, a quadratic improvement over the best possible classical query complexity <math>O(N)</math>, which is a [[linear search]].
==== Deutsch-Jozsa algorithm ====
The Deutsch-Jozsa algorithm is a quantum algorithm designed to solve a toy problem with a smaller query complexity than is possible with a classical algorithm. The toy problem asks whether a function <math>f:\{0,1\}^n\rightarrow\{0,1\}</math> is constant or balanced, those being the only two possibilities.<ref name=":32"/> The only way to evaluate the function <math>f</math> is to consult a [[black box]] or [[Oracle machine|oracle]]. A classical [[deterministic algorithm]] will have to check more than half of the possible inputs to be sure of whether or not the function is constant or balanced. With <math>2^n</math> possible inputs, the query complexity of the most efficient classical deterministic algorithm is <math>2^{n-1}+1</math>.<ref name=":32" /> The Deutsch-Jozsa algorithm takes advantage of quantum parallelism to check all of the elements of the ___domain at once and only needs to query the oracle once
==See also==
|