Content deleted Content added
Line 32:
==Regularity==
===Regular graphs with few vertices===
The <math>2r</math>-regular locally linear graphs must have at least <math>6r-3</math> vertices, because there are this many vertices among any triangle and its neighbors alone. (No two vertices of the triangle can share a neighbor without violating local linearity.) Regular graphs with exactly this many vertices are possible only when <math>r</math> is 1, 2, 3, or 5, and are uniquely defined for each of these four cases. The four regular graphs meeting this bound on the number of vertices are the 3-vertex 2-regular triangle <math>K_3</math>, the 9-vertex 4-regular Paley graph, the 15-vertex 6-regular Kneser graph <math>KG_{6,2}</math>, and the 27-vertex 10-regular [[complement graph]] of the [[Schläfli graph]]. The final 27-vertex 10-regular graph also represents the [[intersection graph]] of the 27 lines on a [[cubic surface]].{{r|lpv}}
|