Content deleted Content added
"The number are finite" ---> "The number is finite" |
|||
Line 6:
The algorithm is used to factorize a number <math>n = pq</math>, where <math>p</math> is a non-trivial factor. A polynomial modulo <math>n</math>, called <math>g(x)</math> (e.g., <math>g(x) = (x^2 + 1) \bmod n</math>), is used to generate a [[pseudorandom sequence]]: A starting value, say 2, is chosen, and the sequence continues as <math>x_1 = g(2)</math>, <math>x_2 = g(g(2))</math>, <math>x_3 = g(g(g(2)))</math>, etc. The sequence is related to another sequence <math>\{x_k \bmod p\}</math>. Since <math>p</math> is not known beforehand, this sequence cannot be explicitly computed in the algorithm. Yet, in it lies the core idea of the algorithm.
Because the number of possible values for these sequences is finite, both the <math>\{x_k\}</math> sequence, which is mod <math>n</math>, and <math>\{x_k \bmod p\}</math> sequence will eventually repeat, even though these values are unknown. If the sequences were to behave like random numbers, the [[birthday paradox]] implies that the number of <math>x_k</math> before a repetition occurs would be expected to be <math>O(\sqrt N)</math>, where <math>N</math> is the number of possible values. So the sequence <math>\{x_k \bmod p\}</math> will likely repeat much earlier than the sequence <math>\{x_k\}</math>. Once a sequence has a repeated value, the sequence will cycle, because each value depends only on the one before it. This structure of eventual cycling gives rise to the name "
[[File:Pollard rho cycle.jpg|thumb|Cycle diagram resembling the Greek letter ρ]]
|