Content deleted Content added
m typo in name |
→Conceptual algebraic explanation: the field F_q, not the ring F_q[x], is referenced. |
||
Line 34:
==Conceptual algebraic explanation==
With some abstract algebra, the idea behind Berlekamp's algorithm becomes conceptually clear. We represent a finite field <math display = "inline"> \mathbb{F}_q
Now, suppose that <math display = "inline"> f(x) = f_1(x) \ldots f_n(x) </math> is the factorization into irreducibles. Then we have a ring isomorphism, <math display = "inline"> \sigma: \mathbb{F}_q[x]/(f(x)) \to \prod_i \mathbb{F}_q[x]/(f_i(x)) </math>, given by the Chinese remainder theorem. The crucial observation is that the Frobenius automorphism <math display = "inline"> x \to x^p </math> commutes with <math display = "inline"> \sigma </math>, so that if we denote <math display = "inline"> \text{Fix}_p(R) = \{ f \in R : f^p = f \} </math>, then <math display = "inline"> \sigma </math> restricts to an isomorphism <math display = "inline"> \text{Fix}_p( \mathbb{F}_q[x]/(f(x)) ) \to \prod_{i = 1}^n \text{Fix}_p( \mathbb{F}_q[x]/(f_i(x)) ) </math>. By finite field theory, <math display = "inline"> \text{Fix}_p( \mathbb{F}_q[x]/(f_i(x)) </math> is always the prime subfield of that field extension. Thus, <math display = "inline"> \text{Fix}_p( \mathbb{F}_q[x]/(f(x)) ) </math> has <math display = "inline"> p </math> elements if and only if <math display = "inline"> f(x) </math> is irreducible.
|