Modular lambda function: Difference between revisions

Content deleted Content added
Line 64:
The quantities <math>u</math> and <math>v</math> have the following product representations which define them as [[Holomorphic function|holomorphic functions]] in the whole upper half-plane:
:<math>u=\sqrt{2}e^{p\pi i\tau/8}\prod_{k=1}^\infty \frac{1+e^{2kp\pi i\tau}}{1+e^{(2k-1)p\pi i\tau}},\quad v=\sqrt{2}e^{\pi i\tau/8}\prod_{k=1}^\infty \frac{1+e^{2k\pi i\tau}}{1+e^{(2k-1)\pi i\tau}}.</math>
Since <math>\lambda(i)=1/2</math>, the modular equations can be used to give [[Algebraic number|algebraic values]] of <math>\lambda(pi)</math> for any prime <math>p</math>.<ref group="note">IteratingFor theany modular[[prime equationpower]], ofwe degreecan <math>p</math> givesiterate the valuesmodular equation of degree <math>\lambda(p^j i)</math> where <math>j\in\mathbb{N}.</math></ref> For any odd <math>n</math>, the algebraic values of <math>\lambda(ni)</math> are given by<ref name="Jacobi">{{Cite book |last1=Jacobi |first1=Carl Gustav Jacob |title=Fundamenta nova theoriae functionum ellipticarum|year=1829}} p. 42</ref><ref group="note"><math>\operatorname{sl}a\varpi</math> is algebraic for every <math>a\in\mathbb{Q}.</math></ref>
:<math>\lambda (ni)=\frac{1}{2^n}\prod_{k=1}^{n-1} \left(1-\operatorname{sl}^2\frac{k\varpi}{n}\right)^2</math>
where <math>\operatorname{sl}</math> is the [[Lemniscate elliptic functions|lemniscate sine]] and <math>\varpi</math> is the [[Lemniscate elliptic functions#Lemniscate constant|lemniscate constant]].