Content deleted Content added
mNo edit summary |
mNo edit summary |
||
Line 10:
:<math>E_{\rm xc} = E_{\rm x} + E_{\rm c}\ ,</math>
so that separate expressions for ''E''<sub>x</sub> and ''E''<sub>c</sub> are sought. The exchange term takes on a simple analytic form for the HEG. Only limiting expressions for the correlation density are known exactly, leading to numerous different approximations for ''
Local-density approximations are important in the construction of more sophisticated approximations to the exchange-correlation energy, such as [[generalized gradient approximation]]s (GGA) or [[hybrid functional]]s, as a desirable property of any approximate exchange-correlation functional is that it reproduce the exact results of the HEG for non-varying densities. As such, LDA's are often an explicit component of such functionals.
Line 22:
== Homogeneous electron gas ==
Approximation for ''
== Exchange functional ==
Line 63:
<math>\zeta = 0\,</math> corresponds to the diamagnetic spin-unpolarized situation with equal
<math>\alpha\,</math> and <math>\beta\,</math> spin densities whereas <math>\zeta = \pm 1</math> corresponds to the ferromagnetic situation where one spin density vanishes. The spin correlation energy density for a given values of the total density and relative polarization, ''
== Exchange-correlation potential ==
|