Content deleted Content added
→top: Add z |
→Basic step: clarification |
||
Line 70:
:<math>z_0 = x_0 y_0.</math>
These formulae require four multiplications and were known to [[Charles Babbage]].<ref>Charles Babbage, Chapter VIII – Of the Analytical Engine, Larger Numbers Treated, [https://archive.org/details/bub_gb_Fa1JAAAAMAAJ/page/n142 <!-- pg=125 --> Passages from the Life of a Philosopher], Longman Green, London, 1864; page 125.</ref> Karatsuba observed that <math>xy</math> can be computed in only three multiplications, at the cost of a few extra additions. With <math>z_0</math> and <math>z_2</math> as before and <math>z_3=(x_1 + x_0) (y_1 + y_0),</math> one can observe that
:<math>
\begin{align}
z_1 &= x_1 y_0 + x_0 y_1 \\
&= (x_1 + x_0) (y_0 + y_1) - x_1 y_1 - x_0 y_0 \\
&=
\end{align}
</math>
Thus only three multiplications are required for computing <math>z_0, z_1</math> and <math>z_2.</math>
===Example===
|