GYO algorithm: Difference between revisions

Content deleted Content added
m shortened the definition of an ear
Added a proof sketch that the GYO algorithm is correct
Line 26:
* Find an ear ''e'' in ''H''
* Remove ''e'' and remove all vertices of ''H'' that are only in ''e''.
If the algorithm successfully eliminates all vertices, then the hypergraph is α-acylic. Otherwise, if the algorithm gets to a non-emtpy hypergraph that has no ears, then the original hypergraph was not α-acyclic.:
 
{{Proof|proof=Assume first the GYO algorithm ends on the empty hypergraph, let <math>e_1,\ldots,e_m</math> be the sequence of ears that it has found, and let <math>H_0,\ldots,H_m</math> the sequence of hypergraphs obtained (in particular <math>H_0 = H</math> and <math>H_m</math> is the empty hypergraph). It is clear that <math>H_m</math>, the empty hypergraph, is <math>\alpha</math>-acyclic. One can then check that, if <math>H_n</math> is <math>\alpha</math>-acyclic then <math>H_{n-1}</math> is also <math>\alpha</math>-acyclic. This implies that <math>H_0</math> is indeed <math>\alpha</math>-acyclic.
 
For the other direction, assuming that <math>H</math> is <math>\alpha</math>-acyclic, one can show that <math>H</math> has an ear <math>e</math>.<ref>{{Citation |last=Brault-Baron |first=Johann |title=Hypergraph Acyclicity Revisited |date=2014-03-27 |url=http://arxiv.org/abs/1403.7076 |access-date=2024-01-18 |doi=10.48550/arXiv.1403.7076}}. See Theorem 6 for the existence of an ear</ref> Since removing this ear yields an hypergraph that is still acyclic, we can continue this process until the hypergraph becomes empty.|title=The GYO algorithm ends on the empty hypergraph if and only if H is <math>\alpha</math>-acyclic}}
 
== Running time ==