Content deleted Content added
m v2.05b - WPCleaner - Fix errors for CW project (Link with encoded space) |
No edit summary Tags: Mobile edit Mobile web edit Advanced mobile edit |
||
Line 1:
{{Short description|Algorithm for visible surface determination in 3D graphics}}
{{Distinguish|Schlemiel the Painter's algorithm}}
[[File:Genesis fractal landscape software (Commodore Amiga).webm|thumb|A [[fractal landscape]] being rendered using the
The '''
The painter's algorithm was initially proposed as a basic method to address the [[Hidden-surface determination]] problem by [[Martin Newell (computer scientist)|Martin Newell]], [[Dick Newell|Richard Newell]], and Tom Sancha in 1972, while all three were working at [[CADCentre]].<ref name=":0">{{Cite book|last1=Newell|first1=M. E.|last2=Newell|first2=R. G.|last3=Sancha|first3=T. L.|title=Proceedings of the ACM annual conference on - ACM'72 |chapter=A solution to the hidden surface problem |date=1972-08-01|chapter-url=https://ohiostate.pressbooks.pub/app/uploads/sites/45/2017/09/newell-newell-sancha.pdf |archive-url=https://web.archive.org/web/20200922053518/https://ohiostate.pressbooks.pub/app/uploads/sites/45/2017/09/newell-newell-sancha.pdf |archive-date=2020-09-22 |url-status=live|series=ACM '72|___location=Boston, Massachusetts, USA|publisher=Association for Computing Machinery|volume=1|pages=443–450|doi=10.1145/800193.569954|isbn=978-1-4503-7491-0|s2cid=13829930}}</ref> The name "painter's algorithm" refers to the technique employed by many painters where they begin by painting distant parts of a scene before parts that are nearer, thereby covering some areas of distant parts.<ref>{{Cite book|last=Berland|first=Dinah|title=Historical Painting Techniques, Materials, and Studio Practice|publisher=The Getty Conservation Institute|year=1995|url=https://www.getty.edu/conservation/publications_resources/pdf_publications/pdf/historical_paintings.pdf}}</ref><ref>{{Cite book|last1=Wylie|first1=Chris|last2=Romney|first2=Gordon|last3=Evans|first3=David|last4=Erdahl|first4=Alan|title=Proceedings of the November 14-16, 1967, fall joint computer conference on - AFIPS '67 (Fall) |chapter=Half-tone perspective drawings by computer |date=1967-11-14|chapter-url=https://doi.org/10.1145/1465611.1465619|___location=Anaheim, California|publisher=Association for Computing Machinery|pages=49–58|doi=10.1145/1465611.1465619|isbn=978-1-4503-7896-3|s2cid=3282975}}</ref> Similarly, the painter's algorithm sorts all the polygons in a scene by their depth and then paints them in this order, farthest to closest.<ref name=":2">{{Cite book|last=Desai|first=Apurva|title=Computer Graphics|publisher=PHI Learning Pvt. Ltd.|year=2008|isbn=9788120335240|url=https://books.google.com/books?id=WQiIj8ZS0IoC&dq=%22hewells%22+painter%27s+algorithm&pg=PA256}}</ref> It will paint over the parts that are normally not visible — thus solving the visibility problem — at the cost of having painted invisible areas of distant objects.<ref name=":1">{{Cite book|last=de Berg|first=Mark|title=Computational Geometry|publisher=Springer|year=2008|url=https://people.inf.elte.hu/fekete/algoritmusok_msc/terinfo_geom/konyvek/Computational%20Geometry%20-%20Algorithms%20and%20Applications,%203rd%20Ed.pdf |archive-url=https://web.archive.org/web/20160803163744/http://people.inf.elte.hu/fekete/algoritmusok_msc/terinfo_geom/konyvek/Computational%20Geometry%20-%20Algorithms%20and%20Applications,%203rd%20Ed.pdf |archive-date=2016-08-03 |url-status=live}}</ref> The ordering used by the algorithm is called a '''<nowiki>depth order'</nowiki>'' and does not have to respect the numerical distances to the parts of the scene: the essential property of this ordering is, rather, that if one object obscures part of another, then the first object is painted after the object that it obscures.<ref name=":1" /> Thus, a valid ordering can be described as a [[topological ordering]] of a [[directed acyclic graph]] representing occlusions between objects.<ref>{{Cite book|title=Ray Shooting, Depth Orders and Hidden Surface Removal|volume=703|series=Lecture Notes in Computer Science|first=Mark|last=de Berg|publisher=Springer|year=1993|isbn=9783540570202|url=https://books.google.com/books?id=b1INPTC3w_QC&pg=PA130|page=130}}.</ref>{{wide image|Painter's algorithm.svg|600px|The distant mountains are painted first, followed by the closer meadows; finally, the trees, are painted. Although some trees are more distant from the viewpoint than some parts of the meadows, the ordering (mountains, meadows, trees) forms a valid depth order, because no object in the ordering obscures any part of a later object.}}
|