Square triangular number: Difference between revisions

Content deleted Content added
this involves square roots so the math needs to be latex; remove redundant derivation
Numerical data: unsourced section
Line 85:
The [[generating function]] for the square triangular numbers is:<ref>{{cite web |first=Simon |last=Plouffe |author-link=Simon Plouffe |title=1031 Generating Functions |url=http://www.lacim.uqam.ca/%7Eplouffe/articles/FonctionsGeneratrices.pdf |publisher=University of Quebec, Laboratoire de combinatoire et d'informatique mathématique |page=A.129 |date=August 1992 |access-date=2009-05-11 |archive-date=2012-08-20 |archive-url=https://web.archive.org/web/20120820012535/http://www.plouffe.fr/simon/articles/FonctionsGeneratrices.pdf |url-status=dead }}</ref>
:<math>\frac{1+z}{(1-z)\left(z^2 - 34z + 1\right)} = 1 + 36z + 1225 z^2 + \cdots</math>
 
==Numerical data==
 
As {{mvar|k}} becomes larger, the ratio {{math|{{sfrac|''t<sub>k</sub>''|''s<sub>k</sub>''}}}} approaches [[square root of 2|{{sqrt|2}}]] ≈&nbsp;{{val|1.41421356}}, and the ratio of successive square triangular numbers approaches {{nowrap|(1 + {{sqrt|2}})<sup>4</sup>}} {{nowrap|{{=}} 17 + 12{{sqrt|2}}}} ≈&nbsp;{{val|33.970562748}}. The table below shows values of {{mvar|k}} between 0 and 11, which comprehend all square triangular numbers up to {{val|e=16}}.
 
:{| class="wikitable" border="1" style="text-align:right"
|-
! {{mvar|k}}
! {{math|''N<sub>k</sub>''}}
! {{math|''s<sub>k</sub>''}}
! {{math|''t<sub>k</sub>''}}
!rowspan=2 valign=top| {{math|{{sfrac|''t<sub>k</sub>''|''s<sub>k</sub>''}}}}
!rowspan=3 valign=top| {{math|{{sfrac|''N<sub>k</sub>''|''N''<sub>''k'' − 1</sub>}}}}
|-
|0
|0
|0
|0
|-
|1
|1
|1
|1
|align=left|1
|-
|2
|36
|6
|8
|align=left|{{val|1.33333333}}
|align=left|36
|-
|3
|{{val|1225|fmt=gaps}}
|35
|49
|align=left|1.4
|align=left|{{val|34.027777778}}
|-
|4
|{{val|41616}}
|204
|288
|align=left|{{val|1.41176471}}
|align=left|{{val|33.972244898}}
|-
|5
|{{val|1413721}}
|{{val|1189|fmt=gaps}}
|{{val|1681|fmt=gaps}}
|align=left|{{val|1.41379310}}
|align=left|{{val|33.970612265}}
|-
|6
|{{val|48024900}}
|{{val|6930|fmt=gaps}}
|{{val|9800|fmt=gaps}}
|align=left|{{val|1.41414141}}
|align=left|{{val|33.970564206}}
|-
|7
|{{val|1631432881}}
|{{val|40391}}
|{{val|57121}}
|align=left|{{val|1.41420118}}
|align=left|{{val|33.970562791}}
|-
|8
|{{val|55420693056}}
|{{val|235416}}
|{{val|332928}}
|align=left|{{val|1.41421144}}
|align=left|{{val|33.970562750}}
|-
|9
|{{val|1882672131025}}
|{{val|1372105}}
|{{val|1940449}}
|align=left|{{val|1.41421320}}
|align=left|{{val|33.970562749}}
|-
|10
|{{val|63955431761796}}
|{{val|7997214}}
|{{val|11309768}}
|align=left|{{val|1.41421350}}
|align=left|{{val|33.970562748}}
|-
|11
|{{val|2172602007770041}}
|{{val|46611179}}
|{{val|65918161}}
|align=left|{{val|1.41421355}}
|align=left|{{val|33.970562748}}
|}<!-- The table was generated in 23-jul-2016 using a Python script available at http://pastebin.com/sWyesrR8 -->
 
==See also==