Content deleted Content added
Citation bot (talk | contribs) Altered template type. Add: arxiv, pmid, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Jay8g | #UCB_toolbar |
Snowman304 (talk | contribs) →Statistical distance VAE variants: updated citations |
||
Line 101:
== Statistical distance VAE variants==
After the initial work of Diederik P. Kingma and [[Max Welling]].<ref>{{
proposed to formulate in a more abstract way the operation of the VAE. In these approaches the loss function is composed of two parts :
* the usual reconstruction error part which seeks to ensure that the encoder-then-decoder mapping <math>x \mapsto D_\theta(E_\psi(x))</math> is as close to the identity map as possible; the sampling is done at run time from the empirical distribution <math>\mathbb{P}^{real}</math> of objects available (e.g., for MNIST or IMAGENET this will be the empirical probability law of all images in the dataset). This gives the term: <math> \mathbb{E}_{x \sim \mathbb{P}^{real}} \left[ \|x - D_\theta(E_\phi(x))\|_2^2\right]</math>.
Line 111:
The statistical distance <math>d</math> requires special properties, for instance is has to be posses a formula as expectation because the loss function will need to be optimized by [[Stochastic gradient descent|stochastic optimization algorithms]]. Several distances can be chosen and this gave rise to several flavors of VAEs:
* the sliced Wasserstein distance used by S Kolouri, et al. in their VAE<ref>{{Cite conference |last=Kolouri |first=Soheil |last2=Pope |first2=Phillip E. |last3=Martin |first3=Charles E. |last4=Rohde |first4=Gustavo K. |date=2019 |title=Sliced Wasserstein Auto-Encoders |url=https://openreview.net/forum?id=H1xaJn05FQ |conference=International Conference on Learning Representations |publisher=ICPR |book-title=International Conference on Learning Representations}}</ref>
* the [[Energy distance|energy distance]] implemented in the Radon Sobolev Variational Auto-Encoder<ref>{{Cite journal |last=Turinici |first=Gabriel |year=2021 |title=Radon-Sobolev Variational Auto-Encoders |url=https://www.sciencedirect.com/science/article/pii/S0893608021001556 |journal=Neural Networks |volume=141 |pages=294–305 |arxiv=1911.13135 |doi=10.1016/j.neunet.2021.04.018 |issn=0893-6080 |pmid=33933889}}</ref>
* the [[Maximum Mean Discrepancy]] distance used in the MMD-VAE<ref>{{Cite arXiv |
* the [[Wasserstein distance]] used in the WAEs<ref>{{Cite arXiv |
* kernel-based distances used in the Kernelized Variational Autoencoder (K-VAE)<ref>{{Cite arXiv |
▲* the [[Maximum Mean Discrepancy]] distance used in the MMD-VAE<ref>{{Cite arXiv|id=1705.02239|title=Maximum Mean Discrepancy Variational Autoencoders|last1=Gretton|first1=A.|last2=Li|first2=Y.|last3=Swersky|first3=K.|last4=Zemel|first4=R.|last5=Turner|first5=R.|date=2017}}</ref>
▲* the [[Wasserstein distance]] used in the WAEs<ref>{{Cite arXiv|id=1711.01558|title=Wasserstein Auto-Encoders|last1=Tolstikhin|first1=I.|last2=Bousquet|first2=O.|last3=Gelly|first3=S.|last4=Schölkopf|first4=B.|date=2018}}</ref>
▲* kernel-based distances used in the Kernelized Variational Autoencoder (K-VAE)<ref>{{Cite arXiv|id=1901.02401|title=Kernelized Variational Autoencoders|last1=Louizos|first1=C.|last2=Shi|first2=X.|last3=Swersky|first3=K.|last4=Li|first4=Y.|last5=Welling|first5=M.|date=2019}}</ref>
== See also ==
{{div col|colwidth=22em}}
|