Multiplication algorithm: Difference between revisions

Content deleted Content added
roni
Citation bot (talk | contribs)
Added bibcode. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Computer arithmetic algorithms | #UCB_Category 20/20
Line 457:
This algorithm uses only three multiplications, rather than four, and five additions or subtractions rather than two. If a multiply is more expensive than three adds or subtracts, as when calculating by hand, then there is a gain in speed. On modern computers a multiply and an add can take about the same time so there may be no speed gain. There is a trade-off in that there may be some loss of precision when using floating point.
 
For [[fast Fourier transform]]s (FFTs) (or any [[Linear map|linear transformation]]) the complex multiplies are by constant coefficients ''c''&nbsp;+&nbsp;''di'' (called [[twiddle factor]]s in FFTs), in which case two of the additions (''d''−''c'' and ''c''+''d'') can be precomputed. Hence, only three multiplies and three adds are required.<ref>{{cite journal |first1=P. |last1=Duhamel |first2=M. |last2=Vetterli |title=Fast Fourier transforms: A tutorial review and a state of the art |journal=Signal Processing |volume=19 |issue=4 |pages=259–299 See Section 4.1 |date=1990 |doi=10.1016/0165-1684(90)90158-U |bibcode=1990SigPr..19..259D |url=https://core.ac.uk/download/pdf/147907050.pdf}}</ref> However, trading off a multiplication for an addition in this way may no longer be beneficial with modern [[floating-point unit]]s.<ref>{{cite journal |first1=S.G. |last1=Johnson |first2=M. |last2=Frigo |title=A modified split-radix FFT with fewer arithmetic operations |journal=IEEE Trans. Signal Process. |volume=55 |issue= 1|pages=111–9 See Section IV |date=2007 |doi=10.1109/TSP.2006.882087 |bibcode=2007ITSP...55..111J |s2cid=14772428 |url=https://www.fftw.org/newsplit.pdf }}</ref>
 
==Polynomial multiplication==