Local-density approximation: Difference between revisions

Content deleted Content added
Adding local short description: "Approximations in density functional theory", overriding Wikidata description "in quantum-mechanical density functional theory"
Line 27:
== Exchange functional ==
 
The exchange-energy density of a HEG is known analytically. The LDA for exchange employs this expression under the approximation that the exchange-energy in a system where the density is not homogeneous, is obtained by applying the HEG results pointwise, yielding the expression<ref name="parryang">{{cite book|last=Parr|first=Robert G|author2=Yang, Weitao |title=Density-Functional Theory of Atoms and Molecules|publisher=Oxford University Press|___location=Oxford |year=1994|isbn=978-0-19-509276-9}}</ref><ref>{{cite journal
|last last1=Dirac |first first1=P. A. M. |year authorlink1=Paul Dirac
| date=1930
| title=Note on exchange phenomena in the Thomas-Fermi atom
| journal=Proc.[[Mathematical Camb.Proceedings Phil.of Soc.the Cambridge Philosophical Society]]
| volume=26
| pages=376–385
| doi=10.1017/S0305004100016108
| issue=3
| bibcode = 1930PCPS...26..376D |doi-access=free}}</ref>
| doi-access=free}}</ref>
 
:<math>E_{\rm x}^{\mathrm{LDA}}[\rho] = - \frac{3}{4}\left( \frac{3}{\pi} \right)^{1/3}\int\rho(\mathbf{r})^{4/3}\ \mathrm{d}\mathbf{r}\ .</math>