Content deleted Content added
m →Grid method: : |
→General case with multiplication of N numbers: <math display="block"> \begin{align} |
||
Line 326:
By exploring patterns after expansion, one see following:
<math display="block">\begin{alignat}{5} (x_1 B^{ m} + x_0) (y_1 B^{m} + y_0) (z_1 B^{ m} + z_0) (a_1 B^{ m} + a_0) &=
\end{alignat}</math>
Each summand is associated to a unique binary number from 0 to
Line 337 ⟶ 338:
If we express this in fewer terms, we get:
<math
</math>, where <math> c(i,j) </math> means digit in number i at position j. Notice that <math> c(i,j) \in \{0,1\} </math>
<math display="block">
\begin{align}
z_{0} &= \prod_{j=1}^N x_{j,0}
\\
z_{N} &= \prod_{j=1}^N x_{j,1}▼
\\
▲z_{N} = \prod_{j=1}^N x_{j,1}
z_{N-1} &= \prod_{j=1}^N (x_{j,0} + x_{j,1}) - \sum_{i \ne N-1}^{N} z_i▼
\end{align}
▲z_{N-1} = \prod_{j=1}^N (x_{j,0} + x_{j,1}) - \sum_{i \ne N-1}^{N} z_i
</math>
|