Content deleted Content added
Fixed reference date error(s) (see CS1 errors: dates for details) and AWB general fixes |
Citation bot (talk | contribs) Altered url. URLs might have been anonymized. Add: authors 1-1. Removed URL that duplicated identifier. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Abductive | Category:Reinforcement learning | #UCB_Category 14/14 |
||
Line 39:
* <math display="inline">\gamma^j \left(R_j + \gamma V^{\pi_\theta}( S_{j+1}) - V^{\pi_\theta}( S_{j})\right)</math>: [[Temporal difference learning|TD(1) learning]].
* <math display="inline">\gamma^j Q^{\pi_\theta}(S_j, A_j)</math>.
* <math display="inline">\gamma^j A^{\pi_\theta}(S_j, A_j)</math>: '''Advantage Actor-Critic (A2C)'''.<ref name=":0">{{Citation |last1=Mnih |first1=Volodymyr |title=Asynchronous Methods for Deep Reinforcement Learning |date=2016-06-16
* <math display="inline">\gamma^j \left(R_j + \gamma R_{j+1} + \gamma^2 V^{\pi_\theta}( S_{j+2}) - V^{\pi_\theta}( S_{j})\right)</math>: TD(2) learning.
* <math display="inline">\gamma^j \left(\sum_{k=0}^{n-1} \gamma^k R_{j+k} + \gamma^n V^{\pi_\theta}( S_{j+n}) - V^{\pi_\theta}( S_{j})\right)</math>: TD(n) learning.
* <math display="inline">\gamma^j \sum_{n=1}^\infty \frac{\lambda^{n-1}}{1-\lambda}\cdot \left(\sum_{k=0}^{n-1} \gamma^k R_{j+k} + \gamma^n V^{\pi_\theta}( S_{j+n}) - V^{\pi_\theta}( S_{j})\right)</math>: TD(λ) learning, also known as '''GAE (generalized advantage estimate)'''.<ref name="arxiv.org">{{Citation |last1=Schulman |first1=John |title=High-Dimensional Continuous Control Using Generalized Advantage Estimation |date=2018-10-20
=== Critic ===
Line 66:
* '''Asynchronous Advantage Actor-Critic (A3C)''': [[Parallel computing|Parallel and asynchronous]] version of A2C.<ref name=":0" />
* '''Soft Actor-Critic (SAC)''': Incorporates entropy maximization for improved exploration.<ref>{{Citation |last1=Haarnoja |first1=Tuomas |title=Soft Actor-Critic Algorithms and Applications |date=2019-01-29
* '''Deep Deterministic Policy Gradient (DDPG)''': Specialized for continuous action spaces.<ref>{{Citation |last1=Lillicrap |first1=Timothy P. |title=Continuous control with deep reinforcement learning |date=2019-07-05
== See also ==
Line 80:
* {{Cite book |last=Bertsekas |first=Dimitri P. |title=Reinforcement learning and optimal control |date=2019 |publisher=Athena Scientific |isbn=978-1-886529-39-7 |edition=2 |___location=Belmont, Massachusetts}}
* {{Cite book |last=Grossi |first=Csaba |title=Algorithms for Reinforcement Learning |date=2010 |publisher=Springer International Publishing |isbn=978-3-031-00423-0 |edition=1 |series=Synthesis Lectures on Artificial Intelligence and Machine Learning |___location=Cham}}
* {{Cite journal |
[[Category:Reinforcement learning]]
|