Content deleted Content added
Thomas Meng (talk | contribs) →Algorithm: some nuances in wording |
Thomas Meng (talk | contribs) →Algorithm: added link to the shortest path problem |
||
Line 5:
==Algorithm==
The algorithm is identical to the [[Ford–Fulkerson algorithm]], except that the search order when finding the [[Flow network#Augmenting paths|augmenting path]] is defined. The path found must be a [[Shortest path problem|shortest path]] that has available capacity. This can be found by a [[breadth-first search]], where we apply a weight of 1 to each edge. The running time of <math>O(|V||E|^2)</math> is found by showing that each augmenting path can be found in <math>O(|E|)</math> time, that every time at least one of the <math>E</math> edges becomes saturated (an edge which has the maximum possible flow), that the distance from the saturated edge to the source along the augmenting path must be longer than last time it was saturated, and that the length is at most <math>|V|</math>. Another property of this algorithm is that the length of the shortest augmenting path increases monotonically
<ref name='clrs'>{{cite book |author=[[Thomas H. Cormen]], [[Charles E. Leiserson]], [[Ronald L. Rivest]] and [[Clifford Stein]] |title=Introduction to Algorithms |publisher=MIT Press | year = 2009 |isbn=978-0-262-03384-8 |edition=third |chapter=26.2 |pages=727–730 |title-link=Introduction to Algorithms }}</ref>. A proof outline using these properties is as follows:
|