Content deleted Content added
Eep, left a test diff template lying around :) |
m Bot: http → https |
||
Line 55:
== Variants ==
In 1980, [[Richard Brent (scientist)|Richard Brent]] published a faster variant of the rho algorithm. He used the same core ideas as Pollard but a different method of cycle detection, replacing [[Floyd's cycle-finding algorithm]] with the related [[Cycle detection#Brent.27s algorithm|Brent's cycle finding method]].<ref>{{cite journal |last=Brent |first=Richard P. |authorlink=Richard Brent (scientist) |year=1980 |title=An Improved Monte Carlo Factorization Algorithm |journal=BIT |volume=20 |issue=2 |pages=176–184 |url=
A further improvement was made by Pollard and Brent. They observed that if <math>\gcd(a,n) > 1</math>, then also <math>\gcd(ab,n) > 1</math> for any positive integer {{tmath|b}}. In particular, instead of computing <math>\gcd (|x-y|,n)</math> at every step, it suffices to define {{tmath|z}} as the product of 100 consecutive <math>|x-y|</math> terms modulo {{tmath|n}}, and then compute a single <math>\gcd(z,n)</math>. A major speed up results as 100 {{math|gcd}} steps are replaced with 99 multiplications modulo {{tmath|n}} and a single {{math|gcd}}. Occasionally it may cause the algorithm to fail by introducing a repeated factor, for instance when {{tmath|n}} is a [[square (algebra)|square]]. But it then suffices to go back to the previous {{math|gcd}} term, where <math>\gcd(z,n)=1</math>, and use the regular ''ρ'' algorithm from there.<ref group="note">Exercise 31.9-4 in CLRS</ref>
|