One may also use [[dual numbers]], defined as numbers in the form <math>a + b\varepsilon</math>, with <math>a,b\in\mathbb R</math> and <math>\varepsilon</math> satisfying by definition <math>\varepsilon^2 = 0</math> and <math>\varepsilon \ne 0</math>. By using the MacLaurin series of cosine and sine, one can show that <math>\cos(\theta\varepsilon) = 1</math> and <math>\sin(\theta\varepsilon) = \theta\varepsilon</math>. Furthermore, it is not hard to prove that the [[Pythagorean identity]] holds:<math display="block">\sin^2(\theta\varepsilon) + \cos^2(\theta\varepsilon) = (\theta\varepsilon)^2 + 1^2 = \theta^2\varepsilon^2 + 1 = \theta^2 \cdot 0 + 1 = 1</math>