Content deleted Content added
additions and corrections; fixed handling of division polynomials |
more changes, case 2 downwards; the algorithm still needs fixing |
||
Line 44:
Schoof's idea was to carry out this computation restricted to points of order <math>l</math> for various small primes <math>l</math>
Fixing an odd prime <math>l</math>, we now move on to solving the problem of determining <math>t_{l}</math>, defined as <math>t \pmod l</math>, for a given prime <math>l \neq 2, p</math>.
If a point <math>(x, y)</math> is in the <math>l</math>-[[torsion subgroup]] <math>E[l]=\{P\in E(\bar{\mathbb{F}_{q}}) \mid lP=O \}</math>, then <math>qP = \bar{q}P</math> where <math>\bar{q}</math> is the unique integer such that <math>q \equiv \bar{q} \pmod l</math> and <math>\mid \bar{q} \mid< l/2</math>.
Note that <math>\phi(O) = O</math> and that for any integer <math>r</math> we have <math>r\phi (P) = \phi (rP)</math>. Thus <math>\phi (P)</math> will have the same order as <math>P</math>. Thus for <math>(x, y)</math> belonging to <math>E[l]</math>, we also have <math>t(x^{q}, y^{q})= \bar{t}(x^{q}, y^{q})</math> if <math>t \equiv \bar{t} \pmod l</math>. Hence we have reduced our problem to solving the equation
Line 96:
===Case 2: <math>(x^{q^{2}}, y^{q^{2}}) = \pm q(x, y)</math>===
We begin with the assumption that <math>(x^{q^{2}}, y^{q^{2}}) = \bar{q}(x, y)</math>. Since <math>l</math> is an odd prime it cannot be that <math>\bar{q}(x, y)=-\bar{q}(x, y)</math> and thus <math>\bar{t}\neq 0</math>. The characteristic equation yields that <math>\bar{t} \phi(P) = 2\bar{q} P</math>. And consequently that <math>\bar{t}^{2}\bar{q} \equiv (2q)^{2} \pmod l</math>.
If <math>q</math> turns out not to be a square modulo <math>l</math> or if the equation does not hold for any of <math>w</math> and <math>-w</math>, our assumption that <math>(x^{q^{2}}, y^{q^{2}}) = +\bar{q}(x, y)</math> is
===Additional Case: <math>l = 2</math>===
Line 111 ⟶ 110:
(1) Choose a set of primes <math>S</math>, <math>p \notin S</math> such that <math>N=\prod_{l\in S} l > 4\sqrt{q}</math>
(2) For <math>l=2</math>, <math>t_{l}=0</math> if and only if <math>\gcd(x^{q}-x, x^{3} + Ax + B)\neq 1</math>, else <math>t_{l}=1</math>
(3) For <math>l \in S\setminus \{2\}</math> do
::(i) if case 2,
:(c) for <math>1\leq \bar{t} \leq (l-1)/2</math> do
:(d)Find <math>q</math>'s square roots
:(e)If <math>\gcd(numerator(x^{q}-x_{w}), \phi_{l})=1</math> <math>t_{l}-2w</math>. Otherwise <math>t_{l}\equiv 2w</math>
(4)
Note that since the set <math>S</math> was chosen so that <math>N>4\sqrt{q}</math>, by Hasse's theorem, we in fact know <math> \sharp E(\mathbb{F}_{q})</math> precisely.
|