Content deleted Content added
m Signing comment by 98.108.198.154 - "→Y Combinator: " |
|||
Line 38:
Can somebody explain this? What does call-by-name versus call-by-value even ''mean'' in the context of lambda calculus? Isn't call-by-name ''always'' the case in lambda calculus? Why does Y g diverge in call-by-value? What does 'diverge' mean in this context? All these things are totally non-obvious. [[User:JulesH|JulesH]] 19:12, 11 November 2007 (UTC)
:What call-by-value means is explained at the given evaluation strategy link. The context is evaluation of lambda expressions in real programming languages on real machines. call-by-value requires the evaluation of all of a function's arguments before the function itself is evaluated -- even if evaluation of the function doesn't require some of the arguments. Evaluation of such arguments might not terminate -- it might even diverge if, say, the evaluation creates a lambda expression which in turn becomes the argument to an evaluation ad infinitum, creating larger and larger lambda expressions. -- [[Special:Contributions/98.108.198.154|98.108.198.154]] ([[User talk:98.108.198.154|talk]]) 06:43, 8 March 2011 (UTC)
Also, the "Example" section refers to something described as the "fix" operator, which hasn't been defined. [[User:JulesH|JulesH]] 19:25, 11 November 2007 (UTC)
|