Lubachevsky–Stillinger algorithm: Difference between revisions

Content deleted Content added
Lsalgo (talk | contribs)
No edit summary
Lsalgo (talk | contribs)
No edit summary
Line 9:
involves a contracting hard boundary of the container,
such as a piston pressing against the particles. The LSA is able to simulate just
such a scenario <ref>Boris D. Lubachevsky and Frank H. Stillinger, Epitaxial frustration in deposited packings of rigid disks and spheres. Physical Review E 70:44, 41604 (2004) http://arxiv.org/PS_cache/cond-mat/pdf/0405/0405650v5.pdf </ref>
<ref> Crystalline-Amorphous Interface Packings for Disks and Spheres, F. H. Stillinger and B. D. Lubachevsky, J. Stat. Phys. 73, 497-514 (1993)</ref> .
However,
Line 34:
<ref> Unusually Dense Crystal Packings of Ellipsoids, A. Donev, F.H. Stillinger, P.M. Chaikin, and S. Torquato, Phys. Rev. Letters 92, 255506 (2004)</ref>
, causes thus modified LSA to slow down dramatically
<ref> http://www.pack-any-shape.com </ref> .
But as long as the shape is spherical,
the LSA is able to handle particle ensembles