Content deleted Content added
examples |
No edit summary |
||
Line 16:
<math>\frac{d}{dx}\ln x = {{1} \over {\frac{d}{du}e^u}} = {{1} \over {e^u}} = {{1} \over {e^{\ln x}}} = {{1} \over {x}}</math>
For more general [[logarithms]], we see that <math>\frac{d}{dx} \log_b(x) = \frac{1}{x \ln(b)} = \frac{\log_b(e)}{x}</math>.
A similar approach can be used to differentiate an inverse [[trigonometric function]]. Let <math>u = \tan x</math>.
|