Logarithmic integral function: Difference between revisions

Content deleted Content added
m typo
More clarifications on definition range near point 1
Line 1:
Definite [[integral]] defined as:
 
: '''li(''x'')''' &equiv; <font size="+21">&int;</font><sub>''0''</sub><sup>''x''</sup> 1/ln ''t'' d''t''
 
is a non-elemental [[function]] called '''logarithmic integral''' or '''integral logarithm'''. For ''x'' > 1 in a point ''t''=1 this integral diverges,. inIn this case we use for li(''x'') the main''Cauchy's principal value'' (Cpv) of unessential integral. This integral is in a connection with ''integral exponential function'' or ''exponential integral'' such as that li(''x'') = Ei (ln ''x''). If we substitute ''x'' with e<sup>''u''</sup>, we get a series:
 
:li(e<sup>''u''</sup>) = &gamma; + ln ''u'' + ''u'' + ''u''<sup>2</sup>/2 &middot; 2! + ''u''<sup>3</sup>/3 &middot; 3! + ''u''<sup>4</sup>/4 &middot; 4! - ...,
 
where &gamma; &#8776; 0.57721 56649 01532 ... is [[Leonhard Euler|Euler-Mascheroni's constant]]. The logarithmic integral also obeys next identity:
 
:li(x<sup>''u''</sup>) = &gamma; + ln ln ''u'' - ln ''u'' + <font size="+21"> &sum;</font><sub>n=1</sub><sup>&infin;</sup> (ln ''u'')<sup>''n''</sup>/''n'' &middot; ''n''! ''m''<sup>''n''</sup>.
 
Logarithmic integral with the main value of nondefinite integral comes in a variety of formulas concerning the density of [[prime number|primes]] in [[number theory]] and specially in [[prime number theorem|prime numbers theorem]], where for example logarithmic integral is defined with no Cauchy's principal value so that Li(2) = 0 and the estimation for ''prime counting function'' &pi;(''n'') is:
 
: &pi;(''n'') ~ '''Li(n)''' &equiv; <font size="+21">&int;</font><sub>''2''</sub><sup>''n''</sup> 1/ ln ''t'' d''t''.
 
:Li(''x'') = li(''x'') - li(2) &#8776; li(''x'') - 1.0451604513 69234 8 ... = Ei (ln ''x'')
 
If we want to avoid singular value in point 1 we sometimes take a constant, denoted with '''c''' or '''&mu;'''>1 in a way that is:
 
:Cpv <font size="+1">&int;</font><sub>0</sub><sup>&mu;</sup> 1/ln ''t'' d''t''.
 
Thus we can rewrite Cpv &int;<sub>''0''</sub><sup>''x''</sup> 1/ln ''t'' d''t'' by &int;<sub>''&mu;''</sub><sup>''x''</sup> 1/ln ''t'' d''t'' in ''x''>1. This method was first used by [[Srinivasa Aaiyangar Ramanujan]] and this constant &mu; &#8776; 1.45136 92348 ... is now called ''Ramanujan-Soldner constant'' or ''Soldner constant''. It represents a zero of an equation li(''x'')=0. Ramanujan calculated &mu; &#8776; 1.45136 3380 ... This constant appears in the following form of prime numbers theorem:
 
: &pi;(''n'') = <font size="+1">&sum;</font><sub>m=1</sub><sup>''&infin;''</sup> &mu;(''m'')/''m'' <font size="+1">&int;</font><sub>&mu;</sub><sup>n</sup> 1/ ln ''t'' d''t'',
 
where &mu;(''m'') is [[Moebius function|Möbius function]].