Logarithmic integral function: Difference between revisions

Content deleted Content added
No edit summary
m typo+General term in li(e^u)+switching indexes of int,sum
Line 1:
The '''logarithmic integral''' or '''integral logarithm''' is a [[function]] li(''x'') defined for all positive [[real number]]s ''x''≠ 1 by the definite [[integral]]:
 
:li(''x'') = <sub>0</sub><font size="+1">&int;</font><sub>0</sub><sup>x</sup> 1/ln ''t'' d''t''.
 
Here, ln denotes the [[natural logarithm]]. The function 1/ln ''t'' has a [[singularity]] at ''t'' = 1, and the integral for ''x'' > 1 has to be interpreted
as ''Cauchy's principal value'':
 
:li(''x'') = lim<sub>&epsilon;&rarr;0</sub> <sub>0</sub><font size="+1">&int;</font><sub>0</sub><sup>1-&epsilon;</sup> 1/ln ''t'' d''t'' + <sub>1+&epsilon;</sub><font size="+1">&int;</font><sub>1+&epsilon;</sub><sup>x</sup> 1/ln ''t'' d''t''.
 
The logarithmic integral is mainly important because it occurs in estimates of [[prime number]] densities, especially in the [[prime number theorem]].
 
The function li(''x'') is related to the ''integral exponential function'' or ''[[exponential integral]]'' Ei(''x'') via the equation
:li(''x'') = Ei (ln ''x'') &nbsp;&nbsp; for all positive real ''x'' &ne; 1.
This leads to series expansions of li(''x''), for instance:
:li(e<sup>''u''</sup>) = &gamma; + ln |''u''| + ''u'' + ''u''<supsub>2n=1</supsub><font size="+1">/(2 &middotsum; 2!) + ''u''</font><sup>3&infin;</sup>/(3 &middot; 3!) + ''u''<sup>4n</sup>/(4n &middot; 4n!) + ... for ''u'' &ne; 0
where &gamma; &asymp; 0.57721 56649 01532 ... is [[Euler-Mascheroni's constant]]
and
:li(''x''<sup>''m''</sup>) = &gamma; + ln |ln ''x''| - ln ''m'' + <sub>n=1</sub><font size="+1"> &sum;</font><sub>n=1</sub><sup>&infin;</sup> (ln ''x'')<sup>''n''</sup> ''m''<sup>''n''</sup>/(''n'' ''n''!).
 
The function li(''x'') has a single positive zero; it occurs at ''x'' &approxasymp; 1.45136 92348 ...; this number is known as the ''Ramanujan-Soldner constant''.